1
|
Ahmad AR, Ridgeway S, Shibl AA, Idaghdour Y, Jha AR. Falcon gut microbiota is shaped by diet and enriched in Salmonella. PLoS One 2024; 19:e0293895. [PMID: 38289900 PMCID: PMC10826950 DOI: 10.1371/journal.pone.0293895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/20/2023] [Indexed: 02/01/2024] Open
Abstract
The gut microbiome is increasingly being appreciated as a master regulator of animal health. However, avian gut microbiome studies commonly focus on birds of economic importance and the gut microbiomes of raptors remain underexplored. Here we examine the gut microbiota of 29 captive falcons-raptors of historic importance-in the context of avian evolution by sequencing the V4 region of the 16S rRNA gene. Our results reveal that evolutionary histories and diet are significantly associated with avian gut microbiota in general, whereas diet plays a major role in shaping the falcon gut microbiota. Multiple analyses revealed that gut microbial diversity, composition, and relative abundance of key diet-discriminating bacterial genera in the falcon gut closely resemble those of carnivorous raptors rather than those of their closest phylogenetic relatives. Furthermore, the falcon microbiota is dominated by Firmicutes and contains Salmonella at appreciable levels. Salmonella presence was associated with altered functional capacity of the falcon gut microbiota as its abundance is associated with depletion of multiple predicted metabolic pathways involved in protein mass buildup, muscle maintenance, and enrichment of antimicrobial compound degradation, thus increasing the pathogenic potential of the falcon gut. Our results point to the necessity of screening for Salmonella and other human pathogens in captive birds to safeguard both the health of falcons and individuals who come in contact with these birds.
Collapse
Affiliation(s)
- Anique R. Ahmad
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Samuel Ridgeway
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Ahmed A. Shibl
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Aashish R. Jha
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
2
|
Wang Z, Zhang E, Tang Y, Wu J, Muhammad S, Shang P, Zong C, Rong K, Ma J. Comparative analysis of the intestinal microbiota of black-necked cranes ( Grus nigricollis) in different wintering areas. Front Cell Infect Microbiol 2024; 13:1302785. [PMID: 38317791 PMCID: PMC10840423 DOI: 10.3389/fcimb.2023.1302785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/13/2023] [Indexed: 02/07/2024] Open
Abstract
Fecal microbiota is essential for host health because it increases digestive effectiveness. The crane species Grus nigricollis (G. nigricollis) is considered to be near threatened. The fecal microbial composition of crane is less understood, particularly in the Tibet, China. This study was performed to investigate the differences in fecal microbial composition and diversity of crane in different wintering areas using third-generation single-molecule real-time sequencing technology in the Tibet, China. According to the findings, 20 samples were used to generate 936 bacterial amplicon sequence variants (ASVs) and 1,800 fungal ASVs, only 4 bacterial ASVs and 20 fungal ASVs were shared in four distinct locations. Firmicutes were the dominant bacterial phylum in all samples, and Ascomycota and Basidiomycota were the dominant fungal phylum. At the genus level, Lactobacillus was the dominant genus in Linzhi City (LZ), Shannan City (SN), and Lasa City (LS), whereas Megamonas was the dominant genus in Rikaze City (RKZ). Naganishia and Mycosphaerella were the dominant fungal genera in SN and RKZ. Mycosphaerella and Tausonia were the dominant fungal genera in LZ. Naganishia and Fusarium were the dominant fungal genera in LS. And the fecal microbial composition varied between the four groups, as shown by the underweighted pair-group method with arithmetic means and principal coordinates analysis. This study offers a theoretical basis for understanding the fecal microbial composition of crane.
Collapse
Affiliation(s)
- Zhongbin Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Department of Resources and Environment, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Erhao Zhang
- Department of Resources and Environment, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Ying Tang
- Department of Resources and Environment, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Jiujiu Wu
- Department of Resources and Environment, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Suliman Muhammad
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Peng Shang
- Department of Resources and Environment, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Cheng Zong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Ke Rong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jianzhang Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
3
|
Mi JX, Liu KL, Ding WL, Zhang MH, Wang XF, Shaukat A, Rehman MU, Jiao XL, Huang SC. Comparative analysis of the gut microbiota of wild wintering whooper swans (Cygnus Cygnus), captive black swans (Cygnus Atratus), and mute swans (Cygnus Olor) in Sanmenxia Swan National Wetland Park of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93731-93743. [PMID: 37515622 DOI: 10.1007/s11356-023-28876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
The gastrointestinal microbiota, a complex ecosystem, is involved in the physiological activities of hosts and the development of diseases. Birds occupy a critical ecological niche in the ecosystem, performing a variety of ecological functions and possessing a complex gut microbiota composition. However, the gut microbiota of wild and captive birds has received less attention in the same region. We profiled the fecal gut microbiome of wild wintering whooper swans (Cygnus Cygnus; Cyg group, n = 25), captive black swans (Cygnus Atratus; Atr group, n = 20), and mute swans (Cygnus Olor; Olor group, n = 30) using 16S rRNA gene sequencing to reveal differences in the gut microbial ecology. The results revealed that the three species of swans differed significantly in terms of the alpha and beta diversity of their gut microbiota, as measured by ACE, Chao1, Simpson and Shannon indices, principal coordinates analysis (PCoA) and non-metricmulti-dimensional scaling (NMDS) respectively. Based on the results of the linear discriminant analysis effect size (LEfSe) and random forest analysis, we found that there were substantial differences in the relative abundance of Gottschalkia, Trichococcus, Enterococcus, and Kurthia among the three groups. Furthermore, an advantageous pattern of interactions between microorganisms was shown by the association network analysis. Among these, Gottschalkia had the higher area under curve (AUC), which was 0.939 (CI = 0.879-0.999), indicating that it might be used as a biomarker to distinguish between wild and captive black swans. Additionally, PICRUSt2 predictions indicated significant differences in gut microbiota functions between wild and captive trumpeter swans, with the gut microbiota functions of Cyg group focusing on carbohydrate metabolism, membrane transport, cofactor, and vitamin metabolism pathways, the Atr group on lipid metabolism, and the Olor group on cell motility, amino acid metabolism, and replication and repair pathways. These findings showed that the gut microbiota of wild and captive swans differed, which is beneficial to understand the gut microecology of swans and to improve regional wildlife conservation strategies.
Collapse
Affiliation(s)
- Jun-Xian Mi
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, China
| | - Kai-Li Liu
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China
| | - Wen-Li Ding
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China
| | - Ming-Hui Zhang
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China
| | - Xue-Fei Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, China
| | - Mujeeb Ur Rehman
- Directorate Planning & Development, Livestock & Dairy Development Department, Quetta, Balochistan, 87500, Pakistan
| | - Xi-Lan Jiao
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China.
| |
Collapse
|