1
|
Kamran A, Hussain MD, Farooq T, Li F, Khan M, Li X, Yang S, Xie X. Deciphering intricate plant-virus interactions: Potyvirids orchestrate protein posttranslational modifications to regulate pathogenicity. Microbiol Res 2025; 290:127940. [PMID: 39536513 DOI: 10.1016/j.micres.2024.127940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
In a molecular-arm-race between viruses and their hosts, viruses have evolved to harness their host's post-translational modifications (PTMs) machinery to gain a competitive edge. These modifications are the most reliable target of plant viruses to overcome the host defence for successful infection. Relatively fewer PTMs i.e., phosphorylation, O-GlcNAcylation, Ubiquitination, and SUMOylation have been studied regulating the potyvirus-plant interaction. Therefore, it is worth drawing attention towards the importance and potential of this undermined but key strategy of potyvirids (members of family Potyviridae) to abduct their host defence line, suggesting to review in detail the existing knowledge of these PTMs and highlight the unexplored modifications that might have played their part in establishing successful infection. The current review provides an understanding of how PTMs execute viral replication and infection dynamics during plant-potyvirid interactions. We highlighted that PTMs linked to CP, NIa-pro, NIb, and VPg are important to specify their host, virulence, overcoming host innate immunity, and most importantly disarming the host of RNA silencing tool of nailing any intruder. The limitations and potential improvements in studying undermined PTMs, including acetylation, glycosylation, methylation, and neddylation, as well as challenges and future perspectives of this inevitable process are mechanistically deciphered in the course of plant-virus interactions. This communication opens new avenues for investigating the fundamental mechanisms of virus infection and the development of new antiviral strategies for sustainable disease managements.
Collapse
Affiliation(s)
- Ali Kamran
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Muhammad Dilshad Hussain
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Tahir Farooq
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100089, China
| | - Mehran Khan
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Sanwei Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Takata S, Kawano S, Mine A, Mise K, Takano Y, Ohtsu M, Kaido M. Unveiling crucial amino acid residues in the red clover necrotic mosaic virus movement protein for dynamic subcellular localization and viral cell-to-cell movement. Virology 2024; 600:110215. [PMID: 39255728 DOI: 10.1016/j.virol.2024.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Emerging evidence suggests that the localization of viral movement proteins (MPs) to both plasmodesmata (PD) and viral replication complexes (VRCs) is the key to viral cell-to-cell movement. However, the molecular mechanism that establishes the subcellular localization of MPs is not fully understood. Here, we investigated the PD localization pathway of red clover necrotic mosaic virus (RCNMV) MP and the functional regions of MP that are crucial for MP localization to PD and VRCs. Disruption analysis of the transport pathway suggested that RCNMV MP does not rely on the ER-Golgi pathway or the cytoskeleton for the localization to the PD. Furthermore, mutagenesis analysis identified amino acid residues within the alpha helix regions responsible for localization to the PD or VRCs. These α-helix regions were also essential for efficient viral cell-to-cell movement, highlighting the importance of these dynamic localization of the MPs for viral infection.
Collapse
Affiliation(s)
- Shota Takata
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Saho Kawano
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Akira Mine
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshitaka Takano
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Mina Ohtsu
- Laboratory of Plant Symbiosis, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
3
|
Fu X, Li R, Liu X, Cheng L, Ge S, Wang S, Cai Y, Zhang T, Shi CL, Meng S, Tan C, Jiang CZ, Li T, Qi M, Xu T. CPK10 regulates low light-induced tomato flower drop downstream of IDL6 in a calcium-dependent manner. PLANT PHYSIOLOGY 2024; 196:2014-2029. [PMID: 39218791 DOI: 10.1093/plphys/kiae406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/13/2024] [Accepted: 06/01/2024] [Indexed: 09/04/2024]
Abstract
Flower drop is a major cause for yield loss in many crops. Previously, we found that the tomato (Solanum lycopersicum) INFLORESCENCE DEFICIENT IN ABSCISSION-Like (SlIDL6) gene contributes to flower drop induced by low light. However, the molecular mechanisms by which SlIDL6 acts as a signal to regulate low light-induced abscission remain unclear. In this study, SlIDL6 was found to elevate cytosolic Ca2+ concentrations ([Ca2+]cyt) in the abscission zone (AZ), which was required for SlIDL6-induced flower drop under low light. We further identified that 1 calcium-dependent protein kinase gene, SlCPK10, was highly expressed in the AZ and upregulated by SlIDL6-triggered [Ca2+]cyt. Overexpression and knockout of SlCPK10 in tomato resulted in accelerated and delayed abscission, respectively. Genetic evidence further indicated that knockout of SlCPK10 significantly impaired the function of SlIDL6 in accelerating abscission. Furthermore, Ser-371 phosphorylation in SlCPK10 dependent on SlIDL6 was necessary and sufficient for its function in regulating flower drop, probably by stabilizing the SlCPK10 proteins. Taken together, our findings reveal that SlCPK10, as a downstream component of the IDL6 signaling pathway, regulates flower drop in tomato under low-light stress.
Collapse
Affiliation(s)
- Xin Fu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Xianfeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Siqi Ge
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Sai Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Yue Cai
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Tong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | | | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Changhua Tan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA
- Department of Plant Sciences, University of California at Davis, CA 95616, USA
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| |
Collapse
|
4
|
Wu Y, Liu N, Zheng C, Li D, Li S, Wu J, Zhao S. Insights into the Complexity and Functionality of Plant Virus Protein Phosphorylation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:598-610. [PMID: 38814574 DOI: 10.1094/mpmi-04-24-0034-cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Phosphorylation, the most extensive and pleiotropic form of protein posttranslation modification, is central to cellular signal transduction. Throughout the extensive co-evolution of plant hosts and viruses, modifications to phosphorylation have served multiple purposes. Such modifications highlight the evolutionary trajectories of viruses and their hosts, with pivotal roles in regulation and refinement of host-virus interactions. In plant hosts, protein phosphorylation orchestrates immune responses, enhancing the activities of defense-related proteins such as kinases and transcription factors, thereby strengthening pathogen resistance in plants. Moreover, phosphorylation influences the interactions between host and viral proteins, altering viral spread and replication within host plants. In the context of plant viruses, protein phosphorylation controls key aspects of the infection cycle, including viral protein functionality and the interplay between viruses and host plant cells, leading to effects on viral accumulation and dissemination within plant tissues. Explorations of the nuances of protein phosphorylation in plant hosts and their interactions with viruses are particularly important. This review provides a systematic summary of the biological roles of the proteins of plant viruses carrying diverse genomes in regulating infection and host responses through changes in the phosphorylation status. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yuansheng Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Liu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengxu Zheng
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongyuan Li
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shanshan Li
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianguo Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shanshan Zhao
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Wu WC, Chen IH, Hou PY, Wang LH, Tsai CH, Cheng CP. The phosphorylation of the movement protein TGBp1 regulates the accumulation of the Bamboo mosaic virus. J Gen Virol 2024; 105. [PMID: 38189334 DOI: 10.1099/jgv.0.001945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Phosphorylation and dephosphorylation of viral movement proteins plays a crucial role in regulating virus movement. Our study focused on investigating the movement protein TGBp1 of Bamboo mosaic virus (BaMV), which is a single-stranded positive-sense RNA virus. Specifically, we examined four potential phosphorylation sites (S15, S18, T58, and S247) within the TGBp1 protein. To study the impact of phosphorylation, we introduced amino acid substitutions at the selected sites. Alanine substitutions were used to prevent phosphorylation, while aspartate substitutions were employed to mimic phosphorylation. Our findings suggest that mimicking phosphorylation at S15, S18 and T58 of TGBp1 might be linked to silencing suppressor activities. The phosphorylated form at these sites exhibits a loss of silencing suppressor activity, leading to reduced viral accumulation in the inoculated leaves. Furthermore, mimicking phosphorylation at residues S15 and S18 could diminish viral accumulation at the single-cell level, while doing so at residue T58 could influence virus movement. However, mimicking phosphorylation at residue S247 does not appear to be relevant to both functions of TGBp1. Overall, our study provides insights into the functional significance of specific phosphorylation sites in BaMV TGBp1, illuminating the regulatory mechanisms involved in virus movement and silencing suppression.
Collapse
Affiliation(s)
- Wan-Chen Wu
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, 970, Taiwan, ROC
| | - I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan, ROC
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Pei-Yu Hou
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, 970, Taiwan, ROC
| | - Lan-Hui Wang
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, 970, Taiwan, ROC
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan, ROC
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Chi-Ping Cheng
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, 970, Taiwan, ROC
| |
Collapse
|
6
|
Ye J, Yan X, Zhang W, Lu J, Xu S, Li X, Qin P, Gong X, Liu Y, Ling Y, Li Y, Zhang Y, Fang F. Integrative proteomic and phosphoproteomic analysis in the female goat hypothalamus to study the onset of puberty. BMC Genomics 2023; 24:621. [PMID: 37853328 PMCID: PMC10583467 DOI: 10.1186/s12864-023-09705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Puberty marks the end of childhood and achieve sexual maturation and fertility. The role of hypothalamic proteins in regulating puberty onset is unclear. We performed a comprehensive differential proteomics and phosphoproteomics analysis in prepubertal and pubertal goats to determine the roles of hypothalamic proteins and phosphoproteins during the onset of puberty. RESULTS We used peptide and posttranslational modifications peptide quantification and statistical analyses, and identified 69 differentially expressed proteins from 5,057 proteins and 576 differentially expressed phosphopeptides from 1574 phosphorylated proteins. Combined proteomic and phosphoproteomics, 759 correlated proteins were identified, of which 5 were differentially expressed only at the protein level, and 201 were only differentially expressed at the phosphoprotein level. Pathway enrichment analyses revealed that the majority of correlated proteins were associated with glycolysis/gluconeogenesis, Fc gamma R-mediated phagocytosis, focal adhesion, GABAergic synapse, and Rap1 signaling pathway. These pathways are related to cell proliferation, neurocyte migration, and promoting the release of gonadotropin-releasing hormone in the hypothalamus. CTNNB1 occupied important locations in the protein-protein interaction network and is involved in focal adhesion. CONCLUSION The results demonstrate that the proteins differentially expression only at the protein level or only differentially expressed at the phosphoprotein level and their related signalling pathways are crucial in regulating puberty in goats. These differentially expressed proteins and phosphorylated proteins may constitute the proteomic backgrounds between the two different stages.
Collapse
Affiliation(s)
- Jing Ye
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Xu Yan
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Wei Zhang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
| | - Juntai Lu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
| | - Shuangshuang Xu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
| | - Xiaoqian Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
| | - Ping Qin
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Xinbao Gong
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Ya Liu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yinghui Ling
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yunsheng Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Fugui Fang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, 230036, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China.
| |
Collapse
|
7
|
Yu R, Ye X, Zhang C, Hu H, Kang Y, Li Z. Identification of Specific Pathogen-Infected sRNA-Mediated Interactions between Turnip Yellows Virus and Arabidopsis thaliana. Curr Issues Mol Biol 2022; 45:212-222. [PMID: 36661502 PMCID: PMC9858106 DOI: 10.3390/cimb45010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Virus infestation can seriously harm the host plant's growth and development. Turnip yellows virus (TuYV) infestation of host plants can cause symptoms, such as yellowing and curling of leaves and root chlorosis. However, the regulatory mechanisms by which TuYV affects host growth and development are unclear. Hence, it is essential to mine small RNA (sRNA) and explore the regulation of sRNAs on plant hosts for disease control. In this study, we analyzed high-throughput data before and after TuYV infestation in Arabidopsis using combined genetics, statistics, and machine learning to identify 108 specifically expressed and critical functional sRNAs after TuYV infection. First, comparing the expression levels of sRNAs before and after infestation, 508 specific sRNAs were significantly up-regulated in Arabidopsis after infestation. In addition, the results show that AI models, including SVM, RF, XGBoost, and CNN using two-dimensional convolution, have robust classification features at the sequence level, with a prediction accuracy of about 96.8%. A comparison of specific sRNAs with genome sequences revealed that 247 matched precisely with the TuYV genome sequence but not with the Arabidopsis genome, suggesting that TuYV viruses may be their source. The 247 sRNAs predicted target genes and enrichment analysis, which identified 206 Arabidopsis genes involved in nine biological processes and three KEGG pathways associated with plant growth and viral stress tolerance, corresponding to 108 sRNAs. These findings provide a reference for studying sRNA-mediated interactions in pathogen infection and are essential for establishing a vital resource of regulation network for the virus infecting plants and deepening the understanding of TuYV virus infection patterns. However, further validation of these sRNAs is needed to gain a new understanding.
Collapse
|
8
|
You L, Zhang R, Fu ZQ. Achieving a more robust antiviral RNAi via subverting a viral virulence protein. MOLECULAR PLANT 2022; 15:1514-1516. [PMID: 36168292 DOI: 10.1016/j.molp.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Liyuan You
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Science, Shanghai 201602, China
| | - Ruize Zhang
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|