1
|
Mannala GK, Rupp M, Walter N, Youf R, Bärtl S, Riool M, Alt V. Repetitive combined doses of bacteriophages and gentamicin protect against Staphylococcus aureus implant-related infections in Galleria mellonella. Bone Joint Res 2024; 13:383-391. [PMID: 39089687 PMCID: PMC11293943 DOI: 10.1302/2046-3758.138.bjr-2023-0340.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Aims Bacteriophages infect, replicate inside bacteria, and are released from the host through lysis. Here, we evaluate the effects of repetitive doses of the Staphylococcus aureus phage 191219 and gentamicin against haematogenous and early-stage biofilm implant-related infections in Galleria mellonella. Methods For the haematogenous infection, G. mellonella larvae were implanted with a Kirschner wire (K-wire), infected with S. aureus, and subsequently phages and/or gentamicin were administered. For the early-stage biofilm implant infection, the K-wires were pre-incubated with S. aureus suspension before implantation. After 24 hours, the larvae received phages and/or gentamicin. In both models, the larvae also received daily doses of phages and/or gentamicin for up to five days. The effect was determined by survival analysis for five days and quantitative culture of bacteria after two days of repetitive doses. Results In the haematogenous infection, a single combined dose of phages and gentamicin, and repetitive injections with gentamicin or in combination with phages, resulted in significantly improved survival rates. In the early-stage biofilm infection, only repetitive combined administration of phages and gentamicin led to a significantly increased survival. Additionally, a significant reduction in number of bacteria was observed in the larvae after receiving repetitive doses of phages and/or gentamicin in both infection models. Conclusion Based on our results, a single dose of the combination of phages and gentamicin is sufficient to prevent a haematogenous S. aureus implant-related infection, whereas gentamicin needs to be administered daily for the same effect. To treat early-stage S. aureus implant-related infection, repetitive doses of the combination of phages and gentamicin are required.
Collapse
Affiliation(s)
- Gopala K. Mannala
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Nike Walter
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
- Department for Psychosomatic Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Raphaelle Youf
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Susanne Bärtl
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Martijn Riool
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Khademi R, Kharaziha M. Antibacterial and Osteogenic Doxycycline Imprinted Bioglass Microspheres to Combat Bone Infection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31966-31982. [PMID: 38829697 DOI: 10.1021/acsami.4c03501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Currently, postoperative infection is a significant challenge in bone and dental surgical procedures, demanding the exploration of innovative approaches due to the prevalence of antibiotic-resistant bacteria. This study aims to develop a strategy for controlled and smart antibiotic release while accelerating osteogenesis to expedite bone healing. In this regard, temperature-responsive doxycycline (DOX) imprinted bioglass microspheres (BGMs) were synthesized. Following the formation of chitosan-modified BGMs, poly N-isopropylacrylamide (pNIPAm) was used for surface imprinting of DOX. The temperature-responsive molecularly imprinted polymers (MIPs) exhibited pH and temperature dual-responsive adsorption and controlled-release properties for DOX. The temperature-responsive MIP was optimized by investigating the molar ratio of N,N'-methylene bis(acrylamide) (MBA, the cross-linker) to NIPAm. Our results demonstrated that the MIPs showed superior adsorption capacity (96.85 mg/g at 35 °C, pH = 7) than nonimprinted polymers (NIPs) and manifested a favorable selectivity toward DOX. The adsorption behavior of DOX on the MIPs fit well with the Langmuir model and the pseudo-second-order kinetic model. Drug release studies demonstrated a controlled release of DOX due to imprinted cavities, which were fitted with the Korsmeyer-Peppas kinetic model. DOX-imprinted BGMs also revealed comparable antibacterial effects against Staphylococcus aureus and Escherichia coli to the DOX (control). In addition, MIPs promoted viability and osteogenic differentiation of MG63 osteoblast-like cells. Overall, the findings demonstrate the significant potential of DOX-imprinted BGMs for use in bone defects. Nonetheless, further in vitro investigations and subsequent in vivo experiments are warranted to advance this research.
Collapse
Affiliation(s)
- Reihaneh Khademi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
3
|
Zhang Y, Cheng Y, Zhao Z, Jiang S, Zhang Y, Li J, Huang S, Wang W, Xue Y, Li A, Tao Z, Wu Z, Zhang X. Enhanced Chemoradiotherapy for MRSA-Infected Osteomyelitis Using Immunomodulatory Polymer-Reinforced Nanotherapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304991. [PMID: 38408365 DOI: 10.1002/adma.202304991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/27/2023] [Indexed: 02/28/2024]
Abstract
The eradication of osteomyelitis caused by methicillin-resistant Staphylococcus aureus (MRSA) poses a significant challenge due to its development of biofilm-induced antibiotic resistance and impaired innate immunity, which often leads to frequent surgical failure. Here, the design, synthesis, and performance of X-ray-activated polymer-reinforced nanotherapeutics that modulate the immunological properties of infectious microenvironments to enhance chemoradiotherapy against multidrug-resistant bacterial deep-tissue infections are reported. Upon X-ray radiation, the proposed polymer-reinforced nanotherapeutic generates reactive oxygen species and reactive nitrogen species. To robustly eradicate MRSA biofilms at deep infection sites, these species can specifically bind to MRSA and penetrate biofilms for enhanced chemoradiotherapy treatment. X-ray-activated nanotherapeutics modulate the innate immunity of macrophages to prevent the recurrence of osteomyelitis. The remarkable anti-infection effects of these nanotherapeutics are validated using a rat osteomyelitis model. This study demonstrates the significant potential of a synergistic chemoradiotherapy and immunotherapy method for treating MRSA biofilm-infected osteomyelitis.
Collapse
Affiliation(s)
- Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yijie Cheng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhe Zhao
- Department of Surgery of Traditional Chinese Medicine, Tianjin Hospital, Tianjin, 300211, China
| | - Shengpeng Jiang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yuhan Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Siyuan Huang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenbo Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yun Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Anran Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhen Tao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhongming Wu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Van Hise NW, Petrak RM, Shah K, Diaz M, Chundi V, Redell M. Oritavancin Versus Daptomycin for Osteomyelitis Treatment After Surgical Debridement. Infect Dis Ther 2024; 13:535-547. [PMID: 38421519 DOI: 10.1007/s40121-024-00925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION Weekly intravenous (IV) oritavancin and daily daptomycin were compared in an outpatient setting following extensive surgical debridement for treating patients with osteomyelitis. METHODS This was a retrospective, observational study of patients diagnosed with acute osteomyelitis. Exclusion criteria were the use of Gram-negative antibiotic therapy, use of antibiotics for more than 48 h prior to oritavancin or daptomycin or prior use of > 2 doses of oritavancin or more than 4 weeks of daptomycin. Clinical success was resolution or improvement of symptoms and no further treatment. Data were analyzed with Chi-square test or Fisher's exact test. RESULTS Consecutive outpatients (n = 150) with acute osteomyelitis who were treated with oritavancin or daptomycin (1:1) following extensive surgical debridement were identified. Staphylococcus aureus was the most common pathogen (n = 117). No patient in either group received prior antibiotic therapy (previous 30 days) or was hospitalized within 90 days prior to surgical debridement. Twenty-one (28%) patients prescribed oritavancin had chronic kidney disease, seven of whom were receiving hemodialysis or peritoneal dialysis. Compared to oritavancin, patients prescribed daptomycin had higher rates of all-cause readmission [odds ratio (OR) 2.89; p < 0.001], more infection-related readmission (OR 3.19; p < 0.001), and greater likelihood of receiving antibiotics post-discontinuation of initial therapy (OR 2.13; p < 0.001). Repeat surgical debridement was required for 68.0% with daptomycin vs. 23.1% with oritavancin (p < 0.001). CONCLUSIONS Oritavancin demonstrated a significantly higher rate of clinical success compared to daptomycin, with lower all-cause and infection-related readmissions, reduced need for repeat surgical debridement, and fewer additional antibiotic requirements.
Collapse
Affiliation(s)
| | - Russell M Petrak
- Metro Infectious Disease Consultants (MIDC), Burr Ridge, IL, 60527, USA
| | - Kairav Shah
- Metro Infectious Disease Consultants (MIDC), Stockbridge, GA, 30281, USA
| | - Melina Diaz
- Metro Infectious Disease Consultants (MIDC), Stockbridge, GA, 30281, USA
| | - Vishnu Chundi
- Metro Infectious Disease Consultants (MIDC), Chicago, IL, 60618, USA
| | - Mark Redell
- Melinta Therapeutics, Medical Affairs, Parsippany-Troy Hills, USA
| |
Collapse
|
5
|
Song Y, Wang J, Liu X, Yu S, Tang X, Tan H. LC-AMP-F1 Derived from the Venom of the Wolf Spider Lycosa coelestis, Exhibits Antimicrobial and Antibiofilm Activities. Pharmaceutics 2024; 16:129. [PMID: 38276499 PMCID: PMC10818355 DOI: 10.3390/pharmaceutics16010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
In recent years, there has been a growing interest in antimicrobial peptides as innovative antimicrobial agents for combating drug-resistant bacterial infections, particularly in the fields of biofilm control and eradication. In the present study, a novel cationic antimicrobial peptide, named LC-AMP-F1, was derived from the cDNA library of the Lycosa coelestis venom gland. The sequence, physicochemical properties and secondary structure of LC-AMP-F1 were predicted and studied. LC-AMP-F1 was tested for stability, cytotoxicity, drug resistance, antibacterial activity, and antibiofilm activity in vitro compared with melittin, a well-studied antimicrobial peptide. The findings indicated that LC-AMP-F1 exhibited inhibitory effects on the growth of various bacteria, including five strains of multidrug-resistant bacteria commonly found in clinical settings. Additionally, LC-AMP-F1 demonstrated effective inhibition of biofilm formation and disruption of mature biofilms. Furthermore, LC-AMP-F1 exhibited favorable stability, minimal hemolytic activity, and low toxicity towards different types of eukaryotic cells. Also, it was found that the combination of LC-AMP-F1 with conventional antibiotics exhibited either synergistic or additive therapeutic benefits. Concerning the antibacterial mechanism, scanning electron microscopy and SYTOX Green staining results showed that LC-AMP-F1 increased cell membrane permeability and swiftly disrupted bacterial cell membranes to exert its antibacterial effects. In summary, the findings and studies facilitated the development and clinical application of novel antimicrobial agents.
Collapse
Affiliation(s)
- Yuxin Song
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Junyao Wang
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Xi Liu
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Shengwei Yu
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Xing Tang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang 421002, China
| | - Huaxin Tan
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| |
Collapse
|
6
|
熊 伟, 袁 灵, 王 梁, 钱 国, 梁 超, 潘 斌, 郭 灵, 魏 文, 邱 勋, 邓 文, 曾 志. [Preparation of berberine-naringin dual drug-loaded composite microspheres and evaluation of their antibacterial-osteogenic properties]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2023; 37:1505-1513. [PMID: 38130195 PMCID: PMC10739667 DOI: 10.7507/1002-1892.202308054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Objective To develop a drug-loaded composite microsphere that can simultaneously release the berberine (BBR) and naringin (NG) to repair infectious bone defects. Methods The NG was loaded on mesoporous microspheres (MBG) to obtain the drug-loaded microspheres (NG-MBG). Then the dual drug-loaded compound microspheres (NG-MBG@PDA-BBR) were obtained by wrapping NG-MBG with polydopamine (PDA) and modifying the coated PDA with BBR. The composite microspheres were characterized by scanning electron microscopy, X-ray diffraction, specific surface area and pore volume analyzer, and Fourier transform infrared spectroscopy; the drug loading rate and release of NG and BBR were measured; the colony number was counted and the bacterial inhibition rate was calculated after co-culture with Staphylococcus aureus and Escherichia coli for 12 hours to observe the antibacterial effect; the biocompatibility was evaluated by live/dead cell fluorescence staining and cell counting kit 8 assay after co-culture with rat's BMSCs for 24 and 72 hours, respectively, and the osteogenic property was evaluated by alkaline phosphatase (ALP) staining and alizarin red staining after 7 and 14 days, respectively. Results NG-MBG@PDA-BBR and three control microspheres (MBG, MBG@PDA, and NG-MBG@PDA) were successfully constructed. Scanning electron microscopy showed that NG-MBG@PDA-BBR had a rough lamellar structure, while MBG had a smooth surface, and MBG@PDA and NG-MBG@PDA had a wrapped agglomeration structure. Specific surface area analysis showed that MBG had a mesoporous structure and had drug-loading potential. Low angle X-ray diffraction showed that NG was successfully loaded on MBG. The X-ray diffraction pattern contrast showed that all groups of microspheres were amorphous. Fourier transform infrared spectroscopy showed that NG and BBR peaks existed in NG-MBG@PDA-BBR. NG-MBG@PDA-BBR had good sustained drug release ability, and NG and BBR had early burst release and late sustained release. NG-MBG@PDA-BBR could inhibit the growth of Staphylococcus aureus and Escherichia coli, and the antibacterial ability was significantly higher than that of MBG, MBG@PDA, and NG-MBG@PDA ( P<0.05). But there was a significant difference in biocompatibility at 72 hours among microspheres ( P<0.05). ALP and alizarin red staining showed that the ALP positive area and the number of calcium nodules in NG-MBG@PDA-BBR were significantly higher than those of MBG and NG-MBG ( P<0.05), and there was no significant difference between NG-MBG@PDA and NG-MBG@PDA ( P>0.05). Conclusion NG-MBG@PDA-BBR have sustained release effects on NG and BBR, indicating that it has ideal dual performance of osteogenesis and antibacterial property.
Collapse
Affiliation(s)
- 伟 熊
- 江西中医药大学研究生院(南昌 330004)Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang Jiangxi, 330004, P. R. China
| | - 灵梅 袁
- 江西中医药大学研究生院(南昌 330004)Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang Jiangxi, 330004, P. R. China
| | - 梁霞 王
- 江西中医药大学研究生院(南昌 330004)Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang Jiangxi, 330004, P. R. China
| | - 国文 钱
- 江西中医药大学研究生院(南昌 330004)Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang Jiangxi, 330004, P. R. China
| | - 超轶 梁
- 江西中医药大学研究生院(南昌 330004)Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang Jiangxi, 330004, P. R. China
| | - 斌 潘
- 江西中医药大学研究生院(南昌 330004)Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang Jiangxi, 330004, P. R. China
| | - 灵 郭
- 江西中医药大学研究生院(南昌 330004)Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang Jiangxi, 330004, P. R. China
| | - 文强 魏
- 江西中医药大学研究生院(南昌 330004)Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang Jiangxi, 330004, P. R. China
| | - 勋祥 邱
- 江西中医药大学研究生院(南昌 330004)Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang Jiangxi, 330004, P. R. China
| | - 文芳 邓
- 江西中医药大学研究生院(南昌 330004)Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang Jiangxi, 330004, P. R. China
| | - 志奎 曾
- 江西中医药大学研究生院(南昌 330004)Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang Jiangxi, 330004, P. R. China
- 江西中医药大学附属医院眼科(南昌 330006)Department of Ophthalmology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang Jiangxi, 330006, P. R. China
| |
Collapse
|
7
|
Perez-Alba E, Flores-Treviño S, Villarreal-Salazar V, Bocanegra-Ibarias P, Vilchez-Cavazos F, Camacho-Ortiz A. Planktonic and biofilm states of Staphylococcus aureus isolated from bone and joint infections and the in vitro effect of orally available antibiotics. J Appl Microbiol 2023; 134:lxad258. [PMID: 37977856 DOI: 10.1093/jambio/lxad258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
AIMS To demonstrate the in vitro activity of orally available antibiotics against Staphylococcus aureus isolated from bone or orthopedic implant materials. The biofilm eradication of the combination of three antibiotics was also assessed. METHODS AND RESULTS Clinical isolates from orthopedic infection samples were collected, and S. aureus isolates were classified according to their biofilm production and composition. Almost all S. aureus isolates (n = 36, 97.3%) produced biofilm and the major biofilm components were polysaccharides. Antimicrobial susceptibility was determined in planktonic (minimal inhibitory concentration; MIC) and biofilm cells (minimal biofilm eradication concentration; MBEC) using the MBEC Calgary Device. Overall, the MBEC ranged higher than the MIC. When combined at borderline-susceptible concentrations, moxifloxacin-rifampin and doxycycline-rifampin were both able to eradicate biofilms in a third of the strains whereas the doxycycline-moxifloxacin combination proved ineffective at eradicating biofilm, inhibiting it only in three strains. CONCLUSIONS We propose rifampin in combination with moxifloxacin or doxycycline for the design of clinical trials of bone and/or orthopedic device infection without proper debridement or material retention.
Collapse
Affiliation(s)
- Eduardo Perez-Alba
- Servicio de Infectología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León., Av. Dr. José Eleuterio González S/N, Mitras Centro, 64460 Monterrey, N.L., Mexico
| | - Samantha Flores-Treviño
- Servicio de Infectología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León., Av. Dr. José Eleuterio González S/N, Mitras Centro, 64460 Monterrey, N.L., Mexico
| | - Verónica Villarreal-Salazar
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León., Pedro de Alba, Niños Héroes, Ciudad Universitaria, 66455 San Nicolás de los Garza, N.L., Mexico
| | - Paola Bocanegra-Ibarias
- Servicio de Infectología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León., Av. Dr. José Eleuterio González S/N, Mitras Centro, 64460 Monterrey, N.L., Mexico
| | - Félix Vilchez-Cavazos
- Servicio de Ortopedia y Traumatología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León., Av. Dr. José Eleuterio González S/N, Mitras Centro, 64460 Monterrey, N.L., Mexico
| | - Adrián Camacho-Ortiz
- Servicio de Infectología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León., Av. Dr. José Eleuterio González S/N, Mitras Centro, 64460 Monterrey, N.L., Mexico
- Departamento de Epidemiología Hospitalaria y Servicio de Infectología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León., Av. Dr. José Eleuterio González S/N, Mitras Centro, 64460 Monterrey, N.L., Mexico
| |
Collapse
|
8
|
Jin C, Fan S, Zhuang Z, Zhou Y. Single-atom nanozymes: From bench to bedside. NANO RESEARCH 2023; 16:1992-2002. [PMID: 36405985 PMCID: PMC9643943 DOI: 10.1007/s12274-022-5060-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 05/06/2023]
Abstract
Single-atom nanozymes (SANs) are the new emerging catalytic nanomaterials with enzyme-mimetic activities, which have many extraordinary merits, such as low-cost preparation, maximum atom utilization, ideal catalytic activity, and optimized selectivity. With these advantages, SANs have received extensive research attention in the fields of chemistry, energy conversion, and environmental purification. Recently, a growing number of studies have shown the great promise of SANs in biological applications. In this article, we present the most recent developments of SANs in anti-infective treatment, cancer diagnosis and therapy, biosensing, and antioxidative therapy. This text is expected to better guide the readers to understand the current state and future clinical possibilities of SANs in medical applications.
Collapse
Affiliation(s)
- Chanyuan Jin
- Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101 China
| | - Sanjun Fan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081 China
| |
Collapse
|
9
|
Postsurgical Pain and Implant Osseointegration Failure: A Case Control Study. Int J Dent 2022; 2022:5271892. [PMID: 35847348 PMCID: PMC9283066 DOI: 10.1155/2022/5271892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Aim. The relationship between postsurgical pain and osseointegration was evaluated and analyzed in this study. Material and method. 27 patients, ranging in age from 35 to 72 years old, 12 males and 15 females, who received dental implants and failed to achieve osseointegration from Tianjin Medical University Second Hospital, were analyzed and studied in the following aspects: bone density, initial torque, one- or two-stage surgery, postsurgical pain, postsurgical swelling, and radiographic evidence of osseointegration failure. Result. 5 patients were assessed to be D4 bone density and 7 cases were assessed to be D3 bone density, 2 patients were assessed to be D2 bone density and 13 patients were assessed to be D1 bone density. All cases were documented with clinically acceptable initial torque. Among the 27 cases, 2 of them were one-stage nonsubmerged surgery and 25 cases were two-stage submerged surgery. 25 out of 27 patients reported moderate to severe pain lasting for more than 72 hours. Radiologic examinations failed to offer any indication of poor osseointegration in the 7-day postsurgical follow-up. Conclusion. Moderate to severe postsurgical pain lasting more than 72 hours displays high odd ratio of poor osseointegrate. The radiological examinations alone failed to offer any valuable evidence for the early detection of osseointegration failure in this study.
Collapse
|