1
|
Khairulmunir M, Gani M, Mohd-Ridwan AR, Karuppannan KV, Abdul-Latiff MAB, Md-Zain BM. Alteration of the gut microbial composition of critically endangered Malayan tigers (Panthera tigris jacksoni) in captivity during enrichment phase. Mol Biol Rep 2024; 51:742. [PMID: 38874703 DOI: 10.1007/s11033-024-09642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Enrichment activities may influence the microbiomes of captive tigers', affecting their health, digestion, and behavior. Currently, there are few studies that address the impact of enrichment activity on tigers' health. This study aimed to determine the diversity of the gut microbiome in captive Malayan tigers at Zoo Melaka and Night Safari during the environmental enrichment phase using a metabarcoding approach. METHODS AND RESULTS This study utilized different enrichment activities which catered for food, sensory, and cognitive enrichment. Eleven fresh fecal samples from captive Malayan tigers at Zoo Melaka and Night Safari were collected under different conditions. All samples were extracted and 16S rRNA V3-V4 region amplicon sequencing was used to characterize the gut microbiome of captive Malayan tigers subjected to various enrichment activities. Firmicutes, Actinobacteriota, and Fusobacteriota were the dominant phyla observed in the gut microbiome of captive Malayan tigers during enrichment activities. This study revealed β-diversity significantly varied between normal and enrichment phase, however no significant differences were observed in α-diversity. This study demonstrates that environmental enrichment improves the gut microbiome of Malayan tigers because gut microbes such as Lachnoclostridium, which has anti-inflammatory effects and helps maintain homeostasis, and Romboutsia, which has a probiotic effect on the gut microbiome. CONCLUSIONS This study provides valuable insights into the effects of enrichment activities on the gut microbiome of captive Malayan tigers, offering guidance for enhancing captive management practices aimed at promoting the health and well-being of Malayan tiger in captivity.
Collapse
Affiliation(s)
- Mohamad Khairulmunir
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Millawati Gani
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
- National Wildlife Forensic Laboratory (NWFL), Ex-Situ Conservation Division, Department of Wildlife and National Parks (PERHILITAN) Peninsular Malaysia, KM 10 Jalan Cheras, Kuala Lumpur, 56100, Malaysia
| | - Abd Rahman Mohd-Ridwan
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, 94300, Malaysia
| | - Kayal Vizi Karuppannan
- National Wildlife Forensic Laboratory (NWFL), Ex-Situ Conservation Division, Department of Wildlife and National Parks (PERHILITAN) Peninsular Malaysia, KM 10 Jalan Cheras, Kuala Lumpur, 56100, Malaysia
| | | | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
2
|
Gani M, Mohd-Ridwan AR, Sitam FT, Kamarudin Z, Selamat SS, Awang NMZ, Karuppannan KV, Md-Zain BM. Habitat shapes the gut microbiome diversity of Malayan tigers (Panthera tigris jacksoni) as revealed through metabarcoding 16S rRNA profiling. World J Microbiol Biotechnol 2024; 40:111. [PMID: 38416247 DOI: 10.1007/s11274-023-03868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/06/2023] [Indexed: 02/29/2024]
Abstract
The gut microbiome refers to the microorganism community living within the digestive tract. The environment plays a crucial role in shaping the gut microbiome composition of animals. The gut microbiome influences the health and behavior of animals, including the critically endangered Malayan tiger (Panthera tigris jacksoni). However, the gut microbiome composition of Malayan tigers, especially those living in their natural habitats, remains poorly understood. To address this knowledge gap, we used next-generation sequencing DNA metabarcoding techniques to analyze the gut microbiome of wild Malayan tigers using fecal samples collected from their natural habitats and in captivity. Our aim was to determine the gut microbiota composition of the Malayan tiger, considering the different types of habitat environments. The results revealed a diverse microbial community within the gut microbiome of Malayan tigers. The prominent phyla that were observed included Firmicutes, Proteobacteria, Actinobacteriota, Fusobacteriota and Bacteroidota. Beta diversity analysis revealed significant differences in gut microbiome composition of Malayan tigers that inhabited oil palm plantations, in villages and protected areas. Diversity analysis also revealed significant difference in the gut microbiome between wild and captive Malayan tigers. However, the distinctions of gut microbiome between wild and captive alpha diversity did not yield significant differences. The differences in microbiome diversity resulted from the interplay of dietary intake and environmental factors. This information will facilitate the establishment of focused conservation approaches and enhance our understanding of the effect of microbiome composition on Malayan tiger health.
Collapse
Affiliation(s)
- Millawati Gani
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- National Wildlife Forensic Laboratory (NWFL), Ex-Situ Conservation Division, Department of Wildlife and National Parks (PERHILITAN), KM 10 Jalan Cheras, 56100, Kuala Lumpur, Malaysia
| | - Abd Rahman Mohd-Ridwan
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Frankie Thomas Sitam
- National Wildlife Forensic Laboratory (NWFL), Ex-Situ Conservation Division, Department of Wildlife and National Parks (PERHILITAN), KM 10 Jalan Cheras, 56100, Kuala Lumpur, Malaysia
| | - Zubaidah Kamarudin
- National Wildlife Rescue Centre (NWRC), Department of Wildlife and National Parks (PERHILITAN), 35600, Sungkai, Perak, Malaysia
| | - Siti Suzana Selamat
- National Wildlife Rescue Centre (NWRC), Department of Wildlife and National Parks (PERHILITAN), 35600, Sungkai, Perak, Malaysia
| | - Nik Mohd Zamani Awang
- National Wildlife Rescue Centre (NWRC), Department of Wildlife and National Parks (PERHILITAN), 35600, Sungkai, Perak, Malaysia
| | - Kayal Vizi Karuppannan
- National Wildlife Forensic Laboratory (NWFL), Ex-Situ Conservation Division, Department of Wildlife and National Parks (PERHILITAN), KM 10 Jalan Cheras, 56100, Kuala Lumpur, Malaysia
| | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
3
|
Khairulmunir M, Gani M, Karuppannan KV, Mohd-Ridwan AR, Md-Zain BM. High-throughput DNA metabarcoding for determining the gut microbiome of captive critically endangered Malayan tiger ( Pantheratigrisjacksoni) during fasting. Biodivers Data J 2023; 11:e104757. [PMID: 37711366 PMCID: PMC10498273 DOI: 10.3897/bdj.11.e104757] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023] Open
Abstract
The Malayan tiger (Pantheratigrisjacksoni) is a critically endangered species native to the Malaysian Peninsula. To imitate wild conditions where tigers do not hunt every day, numerous wildlife sanctuaries do not feed their tigers daily. However, the effects of fasting on the gut microbiota of captive Malayan tigers remains unknown. This study aimed to characterise the gut microbiota of captive Malayan tigers by comparing their microbial communities during fasting versus normal feeding conditions. This study was conducted at the Melaka Zoo, Malaysian Peninsula and involved Malayan tigers fasted every Monday. In total, ten faecal samples of Malayan tiger, two of Bengal tiger (outgroup) and four of lion (outgroup) were collected and analysed for metabarcoding targeting the 16S rRNA V3-V4 region. In total, we determined 14 phyla, 87 families, 167 genera and 53 species of gut microbiome across Malayan tiger samples. The potentially harmful bacterial genera found in this study included Fusobacterium, Bacteroides, Clostridium sensu stricto 1, Solobacterium, Echerichiashigella, Ignatzschineria and Negativibacillus. The microbiome in the fasting phase had a higher composition and was more diverse than in the feeding phase. The present findings indicate a balanced ratio in the dominant phyla, reflecting a resetting of the imbalanced gut microbiota due to fasting. These findings can help authorities in how to best maintain and improve the husbandry and health of Malayan tigers in captivity and be used for monitoring in ex-situ veterinary care unit.
Collapse
Affiliation(s)
- Mohamad Khairulmunir
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia43600 Bangi, SelangorMalaysia
| | - Millawati Gani
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia43600 Bangi, SelangorMalaysia
- Department of Wildlife and National Parks (PERHILITAN), KM 10 Jalan Cheras, Kuala Lumpur, MalaysiaDepartment of Wildlife and National Parks (PERHILITAN), KM 10 Jalan CherasKuala LumpurMalaysia
| | - Kayal Vizi Karuppannan
- Department of Wildlife and National Parks (PERHILITAN), KM 10 Jalan Cheras, Kuala Lumpur, MalaysiaDepartment of Wildlife and National Parks (PERHILITAN), KM 10 Jalan CherasKuala LumpurMalaysia
| | - Abd Rahman Mohd-Ridwan
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, 94300, Kota Samarahan, MalaysiaCentre for Pre-University Studies, Universiti Malaysia Sarawak, 94300Kota SamarahanMalaysia
| | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia43600 Bangi, SelangorMalaysia
| |
Collapse
|
4
|
Chen L, Sun M, Xu D, Gao Z, Shi Y, Wang S, Zhou Y. Gut microbiome of captive wolves is more similar to domestic dogs than wild wolves indicated by metagenomics study. Front Microbiol 2022; 13:1027188. [PMID: 36386659 PMCID: PMC9663663 DOI: 10.3389/fmicb.2022.1027188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Adaptation during the domestication from wolves (Canis lupus) to dogs (Canis lupus familiaris) is a debated ecological topic. Changes in food and environment are major divergences in the domestication of dogs. Gut microbes play an important role in animal adaptation to the food and environmental changes. In this study, shotgun sequencing was performed to compare the species diversity and functional diversity of gut microbes in wild wolves (group CLW, n = 3), captive wolves (group CLC, n = 4), and domestic dogs (group CLF, n = 4). The results found that Bacteroidetes, Firmicutes, Fusobacteria, Proteobacteria and Actinobacteria were the most abundant phyla and Bacteroides, Fusobacterium, Prevotella, Megamonas, Paraprevotella, Faecalibacterium, Clostridium were the most abundant genera in the gut of wolves and dogs. Groups CLW, CLC and CLF have shown significant difference in gut microbial species diversity and functional diversity. Bacteroides, Fusobacterium and Faecalibacterium were most abundant genera in groups CLW, CLC and CLF, respectively. Their abundance varied significantly among groups. Compared to the wild wolves, the intestinal microbiol genes of domestic dogs were significantly enriched in the carbohydrate metabolism pathway of KEGG database. One hundred and seventy-seven enzymes were detected with significantly higher abundance in group CLF than that in group CLW, and 49 enzymes showed extremely significant higher abundance in group CLF than that in group CLW (q < 0.01) base on the function abundance annotated in CAZy database. It is noteworthy that there were also significant differences in the abundance of 140 enzymes between groups CLC and CLW (q < 0.05). Clustering analysis based on both the species and the function abundance of intestinal microbiota all found that groups CLC and CLF clustered into one branch, while samples from group CLW clustered into the other branch. This result suggests that captive wolves are more similar to domestic dogs than wild wolves in both species composition and function composition of intestinal microbiota.
Collapse
|