1
|
Bloch S, Wegrzyn A. Editorial: Bacteriophage and host interactions. Front Microbiol 2024; 15:1422076. [PMID: 38881653 PMCID: PMC11177086 DOI: 10.3389/fmicb.2024.1422076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024] Open
Affiliation(s)
- Sylwia Bloch
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| | - Alicja Wegrzyn
- University Center for Applied and Interdisciplinary Research, University of Gdansk, Gdansk, Poland
| |
Collapse
|
2
|
Liu J, Jiang X, Lei W, Xi Y, Zhang Q, Cai H, Ma X, Liu Y, Wang W, Liu N, Zhang X, Ma W, Zhao C, Ni B, Zhang W, Wang Y. Differences between the intestinal microbial communities of healthy dogs from plateau and those of plateau dogs infected with Echinococcus. Virol J 2024; 21:116. [PMID: 38783310 PMCID: PMC11112841 DOI: 10.1186/s12985-024-02364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE Cystic echinococcosis (CE) represents a profoundly perilous zoonotic disease. The advent of viral macrogenomics has facilitated the exploration of hitherto uncharted viral territories. In the scope of this investigation, our objective is to scrutinize disparities in the intestinal microbiotic ecosystems of canines dwelling in elevated terrains and those afflicted by Echinococcus infection, employing the tool of viral macrogenomics. METHODS In this study, we collected a comprehensive total of 1,970 fecal samples from plateau dogs infected with Echinococcus, as well as healthy control plateau dogs from the Yushu and Guoluo regions in the highland terrain of China. These samples were subjected to viral macrogenomic analysis to investigate the viral community inhabiting the canine gastrointestinal tract. RESULTS Our meticulous analysis led to the identification of 136 viral genomic sequences, encompassing eight distinct viral families. CONCLUSION The outcomes of this study hold the potential to enhance our comprehension of the intricate interplay between hosts, parasites, and viral communities within the highland canine gut ecosystem. Through the examination of phage presence, it may aid in early detection or assessment of infection severity, providing valuable insights into Echinococcus infection and offering prospects for potential treatment strategies.
Collapse
Affiliation(s)
- Jia Liu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Xiaojie Jiang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wen Lei
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Yuan Xi
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qing Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Huixia Cai
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Xiao Ma
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Yufang Liu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Wei Wang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Na Liu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Xiongying Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Wanli Ma
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Cunzhe Zhao
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Bin Ni
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Yongshun Wang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China.
| |
Collapse
|
3
|
Yaşa İ, Evran S, Eren Eroğlu AE, Önder C, Allahyari M, Menderes G, Kullay M. Partial Characterization of Three Bacteriophages Isolated from Aquaculture Hatchery Water and Their Potential in the Biocontrol of Vibrio spp. Microorganisms 2024; 12:895. [PMID: 38792725 PMCID: PMC11123731 DOI: 10.3390/microorganisms12050895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Bacteriophages are currently considered one of the most promising alternatives to antibiotics under the 'One Health' approach due to their ability to effectively combat bacterial infections. This study aimed to characterize Vibrio species in hatchery water samples collected from an aquaculture farm and investigate the biocontrol potential of their bacteriophages. Vibrio spp. (n = 32) isolates confirmed by LNA probe-based qPCR were used as hosts. Three Vibrio phages were isolated. IKEM_vK exhibited a broad host range, infecting V. harveyi (n = 8), V. alginolyticus (n = 2), V. azureus (n = 1), and V. ordalii (n = 1). IKEM_v5 showed lytic activity against V. anguillarum (n = 4) and V. ordalii (n = 1), while IKEM_v14 was specific to V. scophtalmi (n = 4). The morphological appearance of phages and their lytic effects on the host were visualized using scanning electron microscopy (SEM). All three phages remained relatively stable within the pH range of 6-11 and up to 60 °C. The lytic activities and biofilm inhibition capabilities of these phages against planktonic Vibrio cells support their potential applications in controlling vibriosis in aquaculture systems.
Collapse
Affiliation(s)
- İhsan Yaşa
- Basic and Industrial Microbiology Section, Biology Department, Faculty of Science, Ege University, 35100 Izmir, Türkiye;
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Türkiye;
| | - Asiye Esra Eren Eroğlu
- Basic and Industrial Microbiology Section, Biology Department, Faculty of Science, Ege University, 35100 Izmir, Türkiye;
| | - Cengiz Önder
- Kılıç Seafood Juvenile Fish Adaptation and Hatchery Facility, 09320 Aydın, Türkiye; (C.Ö.); (G.M.); (M.K.)
| | - Maryam Allahyari
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, 35100 Izmir, Türkiye;
| | - Gülçin Menderes
- Kılıç Seafood Juvenile Fish Adaptation and Hatchery Facility, 09320 Aydın, Türkiye; (C.Ö.); (G.M.); (M.K.)
| | - Müberra Kullay
- Kılıç Seafood Juvenile Fish Adaptation and Hatchery Facility, 09320 Aydın, Türkiye; (C.Ö.); (G.M.); (M.K.)
| |
Collapse
|
4
|
Zhang H, Zhang H, Du H, Yu X, Xu Y. The insights into the phage communities of fermented foods in the age of viral metagenomics. Crit Rev Food Sci Nutr 2024:1-13. [PMID: 38214674 DOI: 10.1080/10408398.2023.2299323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Phages play a critical role in the assembly and regulation of fermented food microbiome through lysis and lysogenic lifestyle, which in turn affects the yield and quality of fermented foods. Therefore, it is important to investigate and characterize the diversity and function of phages under complex microbial communities and nutrient substrate conditions to provide novel insights into the regulation of traditional spontaneous fermentation. Viral metagenomics has gradually garnered increasing attention in fermented food research to elucidate phage functions and characterize the interactions between phages and the microbial community. Advances in this technology have uncovered a wide range of phages associated with the production of traditional fermented foods and beverages. This paper reviews the common methods of viral metagenomics applied in fermented food research, and summarizes the ecological functions of phages in traditional fermented foods. In the future, combining viral metagenomics with culturable methods and metagenomics will broaden the scope of research on fermented food systems, revealing the complex role of phages and intricate phage-bacterium interactions.
Collapse
Affiliation(s)
- Huadong Zhang
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongxia Zhang
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaowei Yu
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Koonin EV, Kuhn JH, Dolja VV, Krupovic M. Megataxonomy and global ecology of the virosphere. THE ISME JOURNAL 2024; 18:wrad042. [PMID: 38365236 PMCID: PMC10848233 DOI: 10.1093/ismejo/wrad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 02/18/2024]
Abstract
Nearly all organisms are hosts to multiple viruses that collectively appear to be the most abundant biological entities in the biosphere. With recent advances in metagenomics and metatranscriptomics, the known diversity of viruses substantially expanded. Comparative analysis of these viruses using advanced computational methods culminated in the reconstruction of the evolution of major groups of viruses and enabled the construction of a virus megataxonomy, which has been formally adopted by the International Committee on Taxonomy of Viruses. This comprehensive taxonomy consists of six virus realms, which are aspired to be monophyletic and assembled based on the conservation of hallmark proteins involved in capsid structure formation or genome replication. The viruses in different major taxa substantially differ in host range and accordingly in ecological niches. In this review article, we outline the latest developments in virus megataxonomy and the recent discoveries that will likely lead to reassessment of some major taxa, in particular, split of three of the current six realms into two or more independent realms. We then discuss the correspondence between virus taxonomy and the distribution of viruses among hosts and ecological niches, as well as the abundance of viruses versus cells in different habitats. The distribution of viruses across environments appears to be primarily determined by the host ranges, i.e. the virome is shaped by the composition of the biome in a given habitat, which itself is affected by abiotic factors.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, United States
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, United States
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, 75015 Paris, France
| |
Collapse
|
6
|
Zhang YZ, Liu Y, Bai Z, Fujimoto K, Uematsu S, Imoto S. Zero-shot-capable identification of phage-host relationships with whole-genome sequence representation by contrastive learning. Brief Bioinform 2023; 24:bbad239. [PMID: 37466138 PMCID: PMC10516345 DOI: 10.1093/bib/bbad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/17/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023] Open
Abstract
Accurately identifying phage-host relationships from their genome sequences is still challenging, especially for those phages and hosts with less homologous sequences. In this work, focusing on identifying the phage-host relationships at the species and genus level, we propose a contrastive learning based approach to learn whole-genome sequence embeddings that can take account of phage-host interactions (PHIs). Contrastive learning is used to make phages infecting the same hosts close to each other in the new representation space. Specifically, we rephrase whole-genome sequences with frequency chaos game representation (FCGR) and learn latent embeddings that 'encapsulate' phages and host relationships through contrastive learning. The contrastive learning method works well on the imbalanced dataset. Based on the learned embeddings, a proposed pipeline named CL4PHI can predict known hosts and unseen hosts in training. We compare our method with two recently proposed state-of-the-art learning-based methods on their benchmark datasets. The experiment results demonstrate that the proposed method using contrastive learning improves the prediction accuracy on known hosts and demonstrates a zero-shot prediction capability on unseen hosts. In terms of potential applications, the rapid pace of genome sequencing across different species has resulted in a vast amount of whole-genome sequencing data that require efficient computational methods for identifying phage-host interactions. The proposed approach is expected to address this need by efficiently processing whole-genome sequences of phages and prokaryotic hosts and capturing features related to phage-host relationships for genome sequence representation. This approach can be used to accelerate the discovery of phage-host interactions and aid in the development of phage-based therapies for infectious diseases.
Collapse
Affiliation(s)
- Yao-zhong Zhang
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Shirokanedai 4-6-1, Minato-ku, 108-8639 Tokyo, Japan
| | - Yunjie Liu
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Shirokanedai 4-6-1, Minato-ku, 108-8639 Tokyo, Japan
| | - Zeheng Bai
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Shirokanedai 4-6-1, Minato-ku, 108-8639 Tokyo, Japan
| | - Kosuke Fujimoto
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, Asahi-machi 1-4-3, Abeno-ku, 545-8585 Osaka, Japan
- Division of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Shirokanedai 4-6-1, Minato-ku, 108-8639 Tokyo, Japan
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, Asahi-machi 1-4-3, Abeno-ku, 545-8585 Osaka, Japan
- Division of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Shirokanedai 4-6-1, Minato-ku, 108-8639 Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Shirokanedai 4-6-1, Minato-ku, 108-8639 Tokyo, Japan
| |
Collapse
|