1
|
Campbell K, Kowalski CH, Kohler KM, Barber MF. Evolution of polyamine resistance in Staphylococcus aureus through modulation of potassium transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599172. [PMID: 38915543 PMCID: PMC11195161 DOI: 10.1101/2024.06.15.599172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Microbes must adapt to diverse biotic and abiotic factors encountered in host environments. Polyamines are an abundant class of aliphatic molecules that play essential roles in fundamental cellular processes across the tree of life. Surprisingly, the bacterial pathogen Staphylococcus aureus is highly sensitive to polyamines encountered during infection, and acquisition of a polyamine resistance locus has been implicated in spread of the prominent USA300 methicillin-resistant S. aureus lineage. At present, alternative pathways of polyamine resistance in staphylococci are largely unknown. Here we applied experimental evolution to identify novel mechanisms and consequences of S. aureus adaption when exposed to increasing concentrations of the polyamine spermine. Evolved populations of S. aureus exhibited striking evidence of parallel adaptation, accumulating independent mutations in the potassium transporter genes ktrA and ktrD. Mutations in either ktrA or ktrD are sufficient to confer polyamine resistance and function in an additive manner. Moreover, we find that ktr mutations provide increased resistance to multiple classes of unrelated cationic antibiotics, suggesting a common mechanism of resistance. Consistent with this hypothesis, ktr mutants exhibit alterations in cell surface charge indicative of reduced affinity and uptake of cationic molecules. Finally, we observe that laboratory-evolved ktr mutations are also present in diverse natural S. aureus isolates, suggesting these mutations may contribute to antimicrobial resistance during human infections. Collectively this study identifies a new role for potassium transport in S. aureus polyamine resistance with consequences for susceptibility to both host-derived and clinically-used antimicrobials.
Collapse
Affiliation(s)
- Killian Campbell
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA
- Department of Biology, University of Oregon, Eugene, OR USA
| | | | - Kristin M. Kohler
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA
| | - Matthew F. Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA
- Department of Biology, University of Oregon, Eugene, OR USA
| |
Collapse
|
2
|
Śmigiel-Gac N, Smola-Dmochowska A, Jelonek K, Musiał-Kulik M, Barczyńska-Felusiak R, Rychter P, Lewicka K, Dobrzyński P. Bactericidal Biodegradable Linear Polyamidoamines Obtained with the Use of Endogenous Polyamines. Int J Mol Sci 2024; 25:2576. [PMID: 38473823 DOI: 10.3390/ijms25052576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The work presents the synthesis of a series of linear polyamidoamines by polycondensation of sebacoyl dichloride with endogenous polyamines: putrescine, spermidine, spermine, and norspermidine-a biogenic polyamine not found in the human body. During the synthesis carried out via interfacial reaction, hydrophilic, semi-crystalline polymers with an average viscosity molecular weight of approximately 20,000 g/mol and a melting point of approx. 130 °C were obtained. The structure and composition of the synthesized polymers were confirmed based on NMR and FTIR studies. The cytotoxicity tests performed on human fibroblasts and keratinocytes showed that the polymers obtained with spermine and norspermidine were strongly cytotoxic, but only in high concentrations. All the other examined polymers did not show cytotoxicity even at concentrations of 2000 µg/mL. Simultaneously, the antibacterial activity of the obtained polyamides was confirmed. These polymers are particularly active against E. Coli, and virtually all the polymers obtained demonstrated a strong inhibitory effect on the growth of cells of this strain. Antimicrobial activity of the tested polymer was found against strains like Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa. The broadest spectrum of bactericidal action was demonstrated by polyamidoamines obtained from spermine, which contains two amino groups in the repeating unit of the chain. The obtained polymers can be used as a material for forming drug carriers and other biologically active compounds in the form of micro- and nanoparticles, especially as a component of bactericidal creams and ointments used in dermatology or cosmetology.
Collapse
Affiliation(s)
- Natalia Śmigiel-Gac
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Monika Musiał-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Renata Barczyńska-Felusiak
- Faculty of Science and Technology, Jan Długosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Długosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Kamila Lewicka
- Faculty of Science and Technology, Jan Długosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
- Faculty of Science and Technology, Jan Długosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| |
Collapse
|
3
|
Chosy MB, Sun J, Rahn HP, Liu X, Brčić J, Wender PA, Cegelski L. Vancomycin-Polyguanidino Dendrimer Conjugates Inhibit Growth of Antibiotic-Resistant Gram-Positive and Gram-Negative Bacteria and Eradicate Biofilm-Associated S. aureus. ACS Infect Dis 2024; 10:384-397. [PMID: 38252999 PMCID: PMC11646489 DOI: 10.1021/acsinfecdis.3c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The global challenge of antibiotic resistance necessitates the introduction of more effective antibiotics. Here we report a potentially general design strategy, exemplified with vancomycin, that improves and expands antibiotic performance. Vancomycin is one of the most important antibiotics in use today for the treatment of Gram-positive infections. However, it fails to eradicate difficult-to-treat biofilm populations. Vancomycin is also ineffective in killing Gram-negative bacteria due to its inability to breach the outer membrane. Inspired by our seminal studies on cell penetrating guanidinium-rich transporters (e.g., octaarginine), we recently introduced vancomycin conjugates that effectively eradicate Gram-positive biofilm bacteria, persister cells and vancomycin-resistant enterococci (with V-r8, vancomycin-octaarginine), and Gram-negative pathogens (with V-R, vancomycin-arginine). Having shown previously that the spatial array (linear versus dendrimeric) of multiple guanidinium groups affects cell permeation, we report here for the first time vancomycin conjugates with dendrimerically displayed guanidinium groups that exhibit superior efficacy and breadth, presenting the best activity of V-r8 and V-R in single broad-spectrum compounds active against ESKAPE pathogens. Mode-of-action studies reveal cell-surface activity and enhanced vancomycin-like killing. The vancomycin-polyguanidino dendrimer conjugates exhibit no acute mammalian cell toxicity or hemolytic activity. Our study introduces a new class of broad-spectrum vancomycin derivatives and a general strategy to improve or expand antibiotic performance through combined mode-of-action and function-oriented design studies.
Collapse
Affiliation(s)
- Madeline B. Chosy
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Jiuzhi Sun
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Harrison P. Rahn
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Xinyu Liu
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Jasna Brčić
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Kmieciak A, Krzemiński MP, Hodii A, Gorczyca D, Jastrzębska A. New Water-Soluble (Iminomethyl)benzenesulfonates Derived from Biogenic Amines for Potential Biological Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:520. [PMID: 38276459 PMCID: PMC10817586 DOI: 10.3390/ma17020520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
In this paper, a highly efficient and straightforward method for synthesizing novel Schiff bases was developed by reacting selected biogenic amines with sodium 2-formylbenzene sulfonate and sodium 3-formylbenzene sulfonate. 1H and 13C NMR, IR spectroscopy, and high-resolution mass spectrometry were used to characterize the new compounds. The main advantages of the proposed procedure include simple reagents and reactions carried out in water or methanol and at room temperature, which reduces time and energy. Moreover, it was shown that the obtained water-soluble Schiff bases are stable in aqueous solution for at least seven days. Additionally, the antioxidant and antimicrobial activity of synthesized Schiff bases were tested.
Collapse
Affiliation(s)
- Anna Kmieciak
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Str., 87-100 Torun, Poland; (M.P.K.); (A.H.)
| | - Marek P. Krzemiński
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Str., 87-100 Torun, Poland; (M.P.K.); (A.H.)
| | - Anastasiia Hodii
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Str., 87-100 Torun, Poland; (M.P.K.); (A.H.)
| | - Damian Gorczyca
- Faculty of Medicine, Lazarski University, 43 Świeradowska Str., 02-662 Warsaw, Poland;
- LymeLab Pharma, Kochanowskiego 49A Str., 01-864 Warsaw, Poland
| | - Aneta Jastrzębska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Str., 87-100 Torun, Poland; (M.P.K.); (A.H.)
| |
Collapse
|
5
|
Douglas EA, Marshall B, Alghamadi A, Joseph EA, Duggan S, Vittorio S, De Luca L, Serpi M, Laabei M. Improved Antibacterial Activity of 1,3,4-Oxadiazole-Based Compounds That Restrict Staphylococcus aureus Growth Independent of LtaS Function. ACS Infect Dis 2023; 9:2141-2159. [PMID: 37828912 PMCID: PMC10644342 DOI: 10.1021/acsinfecdis.3c00250] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Indexed: 10/14/2023]
Abstract
The lipoteichoic acid (LTA) biosynthesis pathway has emerged as a promising antimicrobial therapeutic target. Previous studies identified the 1,3,4 oxadiazole compound 1771 as an LTA inhibitor with activity against Gram-positive pathogens. We have succeeded in making six 1771 derivatives and, through subsequent hit validation, identified the incorporation of a pentafluorosulfanyl substituent as central in enhancing activity. Our newly described derivative, compound 13, showed a 16- to 32-fold increase in activity compared to 1771 when tested against a cohort of multidrug-resistant Staphylococcus aureus strains while simultaneously exhibiting an improved toxicity profile against mammalian cells. Molecular techniques were employed in which the assumed target, lipoteichoic acid synthase (LtaS), was both deleted and overexpressed. Neither deletion nor overexpression of LtaS altered 1771 or compound 13 susceptibility; however, overexpression of LtaS increased the MIC of Congo red, a previously identified LtaS inhibitor. These data were further supported by comparing the docking poses of 1771 and derivatives in the LtaS active site, which indicated the possibility of an additional target(s). Finally, we show that both 1771 and compound 13 have activity that is independent of LtaS, extending to cover Gram-negative species if the outer membrane is first permeabilized, challenging the classification that these compounds are strict LtaS inhibitors.
Collapse
Affiliation(s)
| | - Brandon Marshall
- School
of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales, U.K.
| | - Arwa Alghamadi
- School
of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales, U.K.
| | - Erin A. Joseph
- School
of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales, U.K.
| | - Seána Duggan
- Medical
Research Council Centre for Medical Mycology at the University of
Exeter, University of Exeter, Exeter EX4 4DQ, U.K.
| | - Serena Vittorio
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98125, Italy
| | - Laura De Luca
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98125, Italy
| | - Michaela Serpi
- School
of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales, U.K.
| | - Maisem Laabei
- Department
of Life Sciences, University of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
6
|
Douglas EJ, Laabei M. Staph wars: the antibiotic pipeline strikes back. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001387. [PMID: 37656158 PMCID: PMC10569064 DOI: 10.1099/mic.0.001387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Antibiotic chemotherapy is widely regarded as one of the most significant medical advancements in history. However, the continued misuse of antibiotics has contributed to the rapid rise of antimicrobial resistance (AMR) globally. Staphylococcus aureus, a major human pathogen, has become synonymous with multidrug resistance and is a leading antimicrobial-resistant pathogen causing significant morbidity and mortality worldwide. This review focuses on (1) the targets of current anti-staphylococcal antibiotics and the specific mechanisms that confirm resistance; (2) an in-depth analysis of recently licensed antibiotics approved for the treatment of S. aureus infections; and (3) an examination of the pre-clinical pipeline of anti-staphylococcal compounds. In addition, we examine the molecular mechanism of action of novel antimicrobials and derivatives of existing classes of antibiotics, collate data on the emergence of resistance to new compounds and provide an overview of key data from clinical trials evaluating anti-staphylococcal compounds. We present several successful cases in the development of alternative forms of existing antibiotics that have activity against multidrug-resistant S. aureus. Pre-clinical antimicrobials show promise, but more focus and funding are required to develop novel classes of compounds that can curtail the spread of and sustainably control antimicrobial-resistant S. aureus infections.
Collapse
Affiliation(s)
| | - Maisem Laabei
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
7
|
Hong S, Su S, Gao Q, Chen M, Xiao L, Cui R, Guo Y, Xue Y, Wang D, Niu J, Huang H, Zhao X. Enhancement of β-Lactam-Mediated Killing of Gram-Negative Bacteria by Lysine Hydrochloride. Microbiol Spectr 2023; 11:e0119823. [PMID: 37310274 PMCID: PMC10434284 DOI: 10.1128/spectrum.01198-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Widespread bacterial resistance among Gram-negative bacteria is rapidly depleting our antimicrobial arsenal. Adjuvants that enhance the bactericidal activity of existing antibiotics provide a way to alleviate the resistance crisis, as new antimicrobials are becoming increasingly difficult to develop. The present work with Escherichia coli revealed that neutralized lysine (lysine hydrochloride) enhances the bactericidal activity of β-lactams in addition to increasing bacteriostatic activity. When combined, lysine hydrochloride and β-lactam increased expression of genes involved in the tricarboxylic acid (TCA) cycle and raised reactive oxygen species (ROS) levels; as expected, agents known to mitigate bactericidal effects of ROS reduced lethality from the combination treatment. Lysine hydrochloride had no enhancing effect on the lethal action of fluoroquinolones or aminoglycosides. Characterization of a tolerant mutant indicated involvement of the FtsH/HflkC membrane-embedded protease complex in lethality enhancement. The tolerant mutant, which carried a V86F substitution in FtsH, exhibited decreased lipopolysaccharide levels, reduced expression of TCA cycle genes, and reduced levels of ROS. Lethality enhancement by lysine hydrochloride was abolished by treating cultures with Ca2+ or Mg2+, cations known to stabilize the outer membrane. These data, plus damage observed by scanning electron microscopy, indicate that lysine stimulates β-lactam lethality by disrupting the outer membrane. Lethality enhancement of β-lactams by lysine hydrochloride was also observed with Acinetobacter baumannii and Pseudomonas aeruginosa, thereby suggesting that the phenomenon is common among Gram-negative bacteria. Arginine hydrochloride behaved in a similar way. Overall, the combination of lysine or arginine hydrochloride and β-lactam offers a new way to increase β-lactam lethality with Gram-negative pathogens. IMPORTANCE Antibiotic resistance among Gram-negative pathogens is a serious medical problem. The present work describes a new study in which a nontoxic nutrient increases the lethal action of clinically important β-lactams. Elevated lethality is expected to reduce the emergence of resistant mutants. The effects were observed with significant pathogens (Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa), indicating widespread applicability. Examination of tolerant mutants and biochemical measurements revealed involvement of endogenous reactive oxygen species in response to outer membrane perturbation. These lysine hydrochloride-β-lactam data support the hypothesis that lethal stressors can stimulate the accumulation of ROS. Genetic and biochemical work also revealed how an alteration in a membrane protease, FtsH, abolishes lysine stimulation of β-lactam lethality. Overall, the work presents a method for antimicrobial enhancement that should be safe, easy to administer, and likely to apply to other nutrients, such as arginine.
Collapse
Affiliation(s)
- Shouqiang Hong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Shaopeng Su
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Qiong Gao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Miaomiao Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Lisheng Xiao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Runbo Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Yinli Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Yunxin Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Dai Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Jianjun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Haihui Huang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xilin Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| |
Collapse
|
8
|
Douglas EJA, Palk N, Brignoli T, Altwiley D, Boura M, Laabei M, Recker M, Cheung GYC, Liu R, Hsieh RC, Otto M, O'Brien E, McLoughlin RM, Massey RC. Extensive remodelling of the cell wall during the development of Staphylococcus aureus bacteraemia. eLife 2023; 12:RP87026. [PMID: 37401629 PMCID: PMC10328498 DOI: 10.7554/elife.87026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023] Open
Abstract
The bloodstream represents a hostile environment that bacteria must overcome to cause bacteraemia. To understand how the major human pathogen Staphylococcus aureus manages this we have utilised a functional genomics approach to identify a number of new loci that affect the ability of the bacteria to survive exposure to serum, the critical first step in the development of bacteraemia. The expression of one of these genes, tcaA, was found to be induced upon exposure to serum, and we show that it is involved in the elaboration of a critical virulence factor, the wall teichoic acids (WTA), within the cell envelope. The activity of the TcaA protein alters the sensitivity of the bacteria to cell wall attacking agents, including antimicrobial peptides, human defence fatty acids, and several antibiotics. This protein also affects the autolytic activity and lysostaphin sensitivity of the bacteria, suggesting that in addition to changing WTA abundance in the cell envelope, it also plays a role in peptidoglycan crosslinking. With TcaA rendering the bacteria more susceptible to serum killing, while simultaneously increasing the abundance of WTA in the cell envelope, it was unclear what effect this protein may have during infection. To explore this, we examined human data and performed murine experimental infections. Collectively, our data suggests that whilst mutations in tcaA are selected for during bacteraemia, this protein positively contributes to the virulence of S. aureus through its involvement in altering the cell wall architecture of the bacteria, a process that appears to play a key role in the development of bacteraemia.
Collapse
Affiliation(s)
- Edward JA Douglas
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
- Department of Life Sciences, University of BathBathUnited Kingdom
| | - Nathanael Palk
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Tarcisio Brignoli
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
- Department of Biosciences, Università degli Studi di MilanoMilanItaly
| | - Dina Altwiley
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Marcia Boura
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Maisem Laabei
- Department of Life Sciences, University of BathBathUnited Kingdom
| | - Mario Recker
- Institute of Tropical Medicine, University of TübingenTübingenGermany
- Centre for Ecology and Conservation, University of Exeter, Penryn CampusExeterUnited Kingdom
| | - Gordon YC Cheung
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH)BethesdaUnited States
| | - Ryan Liu
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH)BethesdaUnited States
| | - Roger C Hsieh
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH)BethesdaUnited States
| | - Michael Otto
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH)BethesdaUnited States
| | - Eoin O'Brien
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity College DublinDublinIreland
| | - Rachel M McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity College DublinDublinIreland
| | - Ruth C Massey
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
- Schools of Microbiology and Medicine, University College Cork, and APC Microbiome IrelandCorkIreland
| |
Collapse
|
9
|
Douglas EJA, Wulandari SW, Lovell SD, Laabei M. Novel antimicrobial strategies to treat multi-drug resistant Staphylococcus aureus infections. Microb Biotechnol 2023; 16:1456-1474. [PMID: 37178319 PMCID: PMC10281381 DOI: 10.1111/1751-7915.14268] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Antimicrobial resistance is a major obstacle for the treatment of infectious diseases and currently represents one of the most significant threats to global health. Staphylococcus aureus remains a formidable human pathogen with high mortality rates associated with severe systemic infections. S. aureus has become notorious as a multidrug resistant bacterium, which when combined with its extensive arsenal of virulence factors that exacerbate disease, culminates in an incredibly challenging pathogen to treat clinically. Compounding this major health issue is the lack of antibiotic discovery and development, with only two new classes of antibiotics approved for clinical use in the last 20 years. Combined efforts from the scientific community have reacted to the threat of dwindling treatment options to combat S. aureus disease in several innovative and exciting developments. This review describes current and future antimicrobial strategies aimed at treating staphylococcal colonization and/or disease, examining therapies that show significant promise at the preclinical development stage to approaches that are currently being investigated in clinical trials.
Collapse
|
10
|
Smola-Dmochowska A, Lewicka K, Macyk A, Rychter P, Pamuła E, Dobrzyński P. Biodegradable Polymers and Polymer Composites with Antibacterial Properties. Int J Mol Sci 2023; 24:ijms24087473. [PMID: 37108637 PMCID: PMC10138923 DOI: 10.3390/ijms24087473] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Antibiotic resistance is one of the greatest threats to global health and food security today. It becomes increasingly difficult to treat infectious disorders because antibiotics, even the newest ones, are becoming less and less effective. One of the ways taken in the Global Plan of Action announced at the World Health Assembly in May 2015 is to ensure the prevention and treatment of infectious diseases. In order to do so, attempts are made to develop new antimicrobial therapeutics, including biomaterials with antibacterial activity, such as polycationic polymers, polypeptides, and polymeric systems, to provide non-antibiotic therapeutic agents, such as selected biologically active nanoparticles and chemical compounds. Another key issue is preventing food from contamination by developing antibacterial packaging materials, particularly based on degradable polymers and biocomposites. This review, in a cross-sectional way, describes the most significant research activities conducted in recent years in the field of the development of polymeric materials and polymer composites with antibacterial properties. We particularly focus on natural polymers, i.e., polysaccharides and polypeptides, which present a mechanism for combating many highly pathogenic microorganisms. We also attempt to use this knowledge to obtain synthetic polymers with similar antibacterial activity.
Collapse
Affiliation(s)
- Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
| | - Kamila Lewicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Alicja Macyk
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| |
Collapse
|
11
|
Biodegradable Block Poly(ester amine)s with Pendant Hydroxyl Groups for Biomedical Applications. Polymers (Basel) 2023; 15:polym15061473. [PMID: 36987253 PMCID: PMC10058592 DOI: 10.3390/polym15061473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
The article presents the results of the synthesis and characteristics of the amphiphilic block terpolymers, built of a hydrophilic polyesteramine block, and hydrophobic blocks made of lactidyl and glycolidyl units. These terpolymers were obtained during the copolymerization of L-lactide with glycolide carried out in the presence of previously produced macroinitiators with protected amine and hydroxyl groups. The terpolymers were prepared to produce a biodegradable and biocompatible material containing active hydroxyl and/or amino groups, with strong antibacterial properties and high surface wettability by water. The control of the reaction course, the process of deprotection of functional groups, and the properties of the obtained terpolymers were made based on 1H NMR, FTIR, GPC, and DSC tests. Terpolymers differed in the content of amino and hydroxyl groups. The values of average molecular mass oscillated from about 5000 g/mol to less than 15,000 g/mol. Depending on the length of the hydrophilic block and its composition, the value of the contact angle ranged from 50° to 20°. The terpolymers containing amino groups, capable of forming strong intra- and intermolecular bonds, show a high degree of crystallinity. The endotherm responsible for the melting of L-lactidyl semicrystalline regions appeared in the range from about 90 °C to close to 170 °C, with a heat of fusion from about 15 J/mol to over 60 J/mol.
Collapse
|
12
|
Alkhzem AH, Li S, Wonfor T, Woodman TJ, Laabei M, Blagbrough IS. Practical Synthesis of Antimicrobial Long Linear Polyamine Succinamides. ACS BIO & MED CHEM AU 2022; 2:607-616. [PMID: 37101429 PMCID: PMC10125363 DOI: 10.1021/acsbiomedchemau.2c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
There are many severe bacterial infections notorious for their ability to become resistant to clinically relevant antibiotics. Indeed, antibiotic resistance is a growing threat to human health, further exacerbated by the lack of new antibiotics. We now describe the practical synthesis of a series of substituted long linear polyamines that produce rapid antibacterial activity against both Gram-positive and Gram-negative bacteria, including meticillin-resistant Staphylococcus aureus. These compounds also reduce biofilm formation in Pseudomonas aeruginosa. The most potent analogues are thermine, spermine, and 1,12-diaminododecane homo- and heterodimeric polyamine succinic acid amides. They are of the order of activity of the aminoglycoside antibiotics kanamycin and tobramycin as positive controls. Their low human cell toxicity is demonstrated in ex vivo hemolytic assays where they did not produce even 5% hemolysis of human erythrocytes. These long, linear polyamines are a new class of broad-spectrum antibacterials active against drug-resistant pathogens.
Collapse
Affiliation(s)
| | - Shuxian Li
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | - Toska Wonfor
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | - Timothy J. Woodman
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, U.K
| | - Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | - Ian S. Blagbrough
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, U.K
| |
Collapse
|