1
|
Jia J, Fu M, Ji W, Xiong N, Chen P, Lin J, Yang Q. from Bacillus subtilis enhances immune response and contributes to the maintenance of intestinal microbial homeostasis. Microbiol Spectr 2024:e0091824. [PMID: 39470280 DOI: 10.1128/spectrum.00918-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Surfactin, a lipopeptide biosurfactant produced by Bacillus spp., has emerged as a promising bioactive compound due to its potent inhibitory effects on bacterial and viral pathogens. This showcases its potential as a non-antibiotic strategy for managing infectious diseases. Our investigation reveals that surfactin administration significantly promotes weight gain and improves immune organ indices in mice, reflecting enhanced immunity and gut health. Surfactin augments phagocytic function in peritoneal macrophages and boosts proliferative responses in splenic lymphocytes post-chicken red blood cell immunization. Furthermore, it increases intestinal villi height, indicative of superior nutrient absorption. It elevates mucin secretion and expression of intestinal mucosal proteins, such as secretory IgA, Muc1, and Muc2, and tight junction proteins claudin-1, occludin, and Zo-1 in the jejunum and colon. Crucially, surfactin modifies the gut microbiota composition by reducing Escherichia coli populations and ameliorating cyclophosphamide-induced gut dysbiosis. Our data suggest that oral surfactin could be a valuable therapeutic modality to alleviate immune suppression and gut damage, proposing a new pathway for immunomodulatory treatment. IMPORTANCE The potential of surfactin as a microbial surfactant extends beyond its surfactant properties, impacting immune regulation and gut health. As the need for alternatives to traditional antibiotics continues to grow, surfactin's ability to enhance host defense mechanisms against common pathogens without directly targeting them with antibiotics offers a strategic advantage. Understanding how surfactin shapes the immune landscape and the gut microbiome can inform innovative interventions against immunosuppression and intestinal impairment, particularly in contexts such as cyclophosphamide-induced toxicity.
Collapse
Affiliation(s)
- Junpeng Jia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mei Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenxin Ji
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ningna Xiong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Peng Chen
- Beijing Enhalor International Tech Co., Ltd., Beijing, China
| | - Jian Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Zhao Y, Zhang Z, Tang A, Zeng Z, Zheng W, Luo Y, Huang Y, Dai X, Lu W, Fan L, Shen L. Cow Placenta Extract Ameliorates Cyclophosphamide-Induced Intestinal Damage by Enhancing the Intestinal Barrier, Improving Immune Function, and Restoring Intestinal Microbiota. Vet Sci 2024; 11:505. [PMID: 39453097 PMCID: PMC11512425 DOI: 10.3390/vetsci11100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Immunosuppression undermines intestinal barrier integrity. Cow placenta extract (CPE) primarily consists of active peptides with immunomodulatory and antioxidant effects. This study aimed to examine the preventive effect of CPE against intestinal damage induced by cyclophosphamide (Cy) in immunosuppressed mice. Thirty-six mice were randomly allocated into three groups: control group (C), model group (M), and treatment group (CPE). The mice in the CPE group were provided with 1500 mg/kg/day of CPE via gavage. In the last 3 days, mice in the groups M and CPE received intraperitoneal injections of 80 mg/kg/day of Cy. The results showed that CPE improved intestinal barrier function by decreasing serum d-Lactate (D-LA) levels and diamine oxidase (DAO) activity, while elevating the relative expression of Occludin, zonula occludens-1 (ZO-1), and mucin-2 (MUC-2) mRNA. Additionally, CPE improved the immune organ index and elevated the levels of secretory immunoglobulin A (sIgA), superoxide dismutase (SOD), interleukin-1beta (IL-1β), interleukin-4 (IL-4), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) in the intestine, thereby enhancing intestinal mucosal immune function. Furthermore, CPE improved the diversity of intestinal microbiota and increased the abundance of Candidatus_Saccharimonas, Psychrobacter, and Enterorhabdus, which promoted the proper functioning of the intestines. These findings suggest that CPE effectively ameliorates Cy-induced intestinal damage by enhancing the intestinal barrier, improving immune function, and restoring intestinal microbiota.
Collapse
Affiliation(s)
- Yuquan Zhao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Zeru Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Anguo Tang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Zhi Zeng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Weijian Zheng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Yuxin Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Yixin Huang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Xinyi Dai
- Party School of the Communist Party of China Yaan Municipal Committee, Yaan 625014, China;
| | - Wei Lu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China;
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| |
Collapse
|
3
|
Huang H, Xie Y, Li X, Gui F, Yang P, Li Y, Zhang L, Du H, Bi S, Cao L. Danggui Buxue decoction regulates the immune function and intestinal microbiota of cyclophosphamide induced immunosuppressed mice. Front Pharmacol 2024; 15:1420411. [PMID: 39224776 PMCID: PMC11366653 DOI: 10.3389/fphar.2024.1420411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Ethnopharmacological relevance Danggui Buxue decoction (DBD) is a traditional Chinese herbal formula. According to the theory of traditional Chinese medicine, the combination of Astragali Radix (AR) and Angelica sinensis (AS) is a classic prescription of tonifying qi and enriching blood. DBD has the functions of hematopoietic, immune enhancement and inflammation inhibition, usually used to treat qi and blood deficiency symptoms. Aim of the study Cyclophosphamide (CY) can inhibit humoral and cellular immunity, leading to the overall immune disorder of the body, resulting in immunosuppressive (IS). Pre-laboratory studies confirmed the immunomodulatory effects of DBD, but its mechanisms have not been thoroughly studied. In this study, the main purpose was to determine the effects of DBD on the immune function and intestinal mucosal barrier function of IS mice induced by CY, and initially explored the immunomodulatory mechanism of DBD. Materials and methods 100 g of AR and 20 g of AS were accurately weighed and 0.5 g/mL of the DBD was obtained by boiling, filtration and rotary evaporation. Then, mice in the DBD group were administered 5 g/kg of DBD by gavage, positive group were administered 40 mg/kg of levamisole hydrochloride, whereas those in the control and model groups were given the corresponding volume of normal saline by gavage for 1 week. At the end of the experiment, blood, spleen, thymus, ileum and cecum contents of all the experimental mice were collected aseptically. IS mouse model induced by intraperitoneal injection of 80 mg/kg CY for three consecutive days. Pathomorphology was used to observe the physical barrier of the intestine, flow cytometry to detect splenic lymphocytes, immunohistochemistry to determine the content of intestinal barrier-associated proteins, ELISA to measure the secretion of ileal SIgA, qRT-PCR to detect the mRNA expression of immune-related genes in the intestine, and high-throughput sequencing and analysis of cecum contents. Results DBD alleviated spleen tissue damage and restored impaired immune functions, such as increased thymus index and CD4+/CD8+ subsets of spleen lymphocytes. In addition, DBD could increase ileum villi length and the ratio of villi length to crypt depth (V/C), and decrease crypt depth. Moreover, DBD administration up-regulated the expression of ZO-1, Occludin, Claudin-1, MUC-2 mRNA in ileum. And the secretions of sIgA and ZO-1 in ileum were also significantly improved. Furthermore, the administration of DBD can increase the diversity of gut microbiota, improve the composition of intestinal flora and increase the relative abundance of beneficial genus, such as Bacteroides. Conclusion DBD alleviated CY-induced immune damage by decreasing the ratio of spleen index to CD4+/CD8+ of T lymphocyte subsets. And the intestinal barrier function of mice was by improves improving the intestinal morphology of the ileum and up-regulating the expression levels of ZO-1, MUC-2 and SIgA. DBD regulates CY-induced gut microbiota dysregulation in mice by increasing species diversity and richness, regulating the phylum, class and order levels of Bacteroidetes.
Collapse
Affiliation(s)
- Huan Huang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yufei Xie
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xifeng Li
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Fuxing Gui
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Pingrui Yang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yutao Li
- Weifang Academy of Agricultural Sciences, Institute of Animal Husbandry, Shandong, China
| | - Li Zhang
- Hanzhong Animal Disease Prevention and Control Center, Shaanxi, China
| | - Hongxu Du
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- Chi Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing, China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- Chi Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing, China
| | - Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- Chi Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Li J, Wei Z, Lou F, Zhang X, Duan J, Luo C, Hu X, Tu P, Liu L, Zhong R, Chen L, Du X, Zhang H. Disrupted Microbiota of Colon Results in Worse Immunity and Metabolism in Low-Birth-Weight Jinhua Newborn Piglets. Microorganisms 2024; 12:1371. [PMID: 39065139 PMCID: PMC11278573 DOI: 10.3390/microorganisms12071371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
The Jinhua pig is well known in China due to its delicious meat. However, because of large litter size, low birth weight always happens. This experiment used this breed as a model to research bacterial evidence leading to growth restriction and provide a possible solution linked to probiotics. In this experiment, the differences in organs indexes, colonic morphology, short chain fatty acid (SCFA) concentrations, microbiome, and transcriptome were detected between piglets in the standard-birth-weight group (SG) and low-birth-weight group (LG) to find potential evidence leading to low birth weight. We found that LG piglets had a lower liver index (p < 0.05), deeper colonic crypt depth (p < 0.05), fewer goblet cells (p < 0.05), and more inflammatory factor infiltration. In addition, differentially expressed genes (DEGs) were mainly enriched in B-cell immunity and glucose metabolism, and LG piglets had lower concentrations of SCFAs, especially butyrate and isobutyrate (p < 0.05). Finally, most of the significantly differentially abundant microbes were fewer in LG piglets, which affected DEG expressions and SCFA concentrations further resulting in worse energy metabolism and immunity. In conclusion, colonic disrupted microbiota may cause worse glucose metabolism, immunity, and SCFA production in LG piglets, and beneficial microbes colonized in SG piglets may benefit these harmful changes.
Collapse
Affiliation(s)
- Jiaheng Li
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Zeou Wei
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
- School of Agriculture and Food Science, University College Dublin, Belfeld, D04 V1W8 Dublin, Ireland
| | - Fangfang Lou
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Xiaojun Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Jiujun Duan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Chengzeng Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Xujin Hu
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Pingguang Tu
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Lei Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| | - Xizhong Du
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua 321011, China; (J.L.); (F.L.); (X.Z.); (X.H.); (P.T.); (X.D.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.W.); (J.D.); (C.L.); (L.L.); (L.C.); (H.Z.)
| |
Collapse
|
5
|
Gong H, Yuan Q, Du M, Mao X. Polar lipid-enriched milk fat globule membrane supplementation in maternal high-fat diet promotes intestinal barrier function and modulates gut microbiota in male offspring. Food Funct 2023; 14:10204-10220. [PMID: 37909908 DOI: 10.1039/d2fo04026c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Intestinal development plays a critical role in physiology and disease in early life and has long-term effects on the health status throughout the lifespan. Maternal high-fat diet (HFD) fuels the inflammatory reaction and metabolic syndrome, disrupts intestinal barrier function, and alters gut microbiota in offspring. The aim of this study was to evaluate whether polar lipid-enriched milk fat globule membrane (MFGM-PL) supplementation in maternal HFD could promote intestinal barrier function and modulate gut microbiota in male offspring. Obese female rats induced by HFD were supplemented with MFGM-PL during pregnancy and lactation. The offspring were fed HFD for 11 weeks after weaning. MFGM-PL supplementation to dams fed HFD decreased the body weight gain and ameliorated abnormalities of serum insulin, lipids, and inflammatory cytokines in offspring at weaning. Maternal MFGM-PL supplementation promoted the intestinal barrier by increasing the expression of Ki-67, lysozyme, mucin 2, zonula occludens-1, claudin-3, and occludin. Additionally, MFGM-PL supplementation to HFD dams improved gut dysbiosis in offspring. MFGM-PL increased the relative abundance of Akkermansiaceae, Ruminococcaceae, and Blautia. Concomitantly, maternal MFGM-PL treatment increased short-chain fatty acids of colonic contents and G-protein-coupled receptor (GPR) 41 and GPR 43 expressions in the colon of offspring. Importantly, the beneficial effects of maternal MFGM-PL intervention persisted to offspring's adulthood, as evidenced by increased relative abundance of norank_f_Muribaculaceae, Peptostreptococcaceae and Romboutsia and modulated the taxonomic diversity of gut microbiota in adult offspring. In summary, maternal MFGM-PL supplementation improved intestinal development in the offspring of dams fed with HFD, which exerted long-term beneficial effects on offspring intestinal health.
Collapse
Affiliation(s)
- Han Gong
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Qichen Yuan
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Xueying Mao
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Lv M, Liu M, Zou S, Yin D, Lv C, Li F, Wei Y. Immune Enhancement of Clam Peptides on Immunosuppressed Mice Induced by Hydrocortisone. Molecules 2023; 28:5709. [PMID: 37570679 PMCID: PMC10420899 DOI: 10.3390/molecules28155709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Clam peptides, marine-derived biological peptides, have been broadly investigated and applied as health foods, among which immunomodulation is one of their biological activities that cannot be ignored in vivo. In this study, we concentrated on exploring the effects of Ruditapes philippinarum peptides (RPPs) on immunomodulation and the balance of intestinal microbiota in hydrocortisone (HC)-induced immunosuppressed mice. The results revealed that RPPs could increase the thymus and spleen indices and number of white blood cells, promote the secretion level of cytokines (IL-2, IL-6, TNF-α, and INF-γ), repair the morphology of the spleen and thymus, and enhance the proliferation of T-lymphocyte subsets in immunosuppressed mice. Moreover, RPPs improved the abundance of beneficial bacteria and preserved the ecological equilibrium of the gut microbiota. In conclusion, RPPs have significant immunomodulatory effects on immunosuppressed mice and may be developed as immunomodulators or immune adjuvants in functional foods and drugs; they are also beneficial to the utilization of the high value of marine shellfish.
Collapse
Affiliation(s)
- Meibin Lv
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (M.L.); (M.L.)
| | - Mengyue Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (M.L.); (M.L.)
| | - Shengcan Zou
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266105, China; (S.Z.); (D.Y.); (C.L.)
| | - Dongli Yin
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266105, China; (S.Z.); (D.Y.); (C.L.)
| | - Chenghan Lv
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266105, China; (S.Z.); (D.Y.); (C.L.)
| | - Fei Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (M.L.); (M.L.)
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (M.L.); (M.L.)
| |
Collapse
|
7
|
The Effects of Saposhnikovia divaricata Aqueous Extracts on the Inflammation and Intestinal Microflora in Allergic Rhinitis Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1052359. [PMID: 36276863 PMCID: PMC9586736 DOI: 10.1155/2022/1052359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
Background Allergic rhinitis (AR) is a type I allergic disease induced by IgE. Traditional Chinese medicine Saposhnikovia divaricata (Turcz.) Schischk (SD) has anti-inflammatory and antiallergic effects. Materials and Methods AR model mice were constructed with ovalbumin (OVA) sensitization to observe the improving effect of SD treatment on AR by counting the number of sneezing and rubbing the nose, hematoxylin-eosin, periodic acid-Schiff, and toluidine blue stains. In addition, the allergy and inflammatory cytokines levels and inflammatory cells were observed by ELISA and Wright's-Giemsa stain. The protein levels of the TLR4/TRAF6/NF-κB and IL-6/ROR-γt/STAT3 pathways were measured by immunohistochemistry, quantitative real-time PCR, and western blot. The intestinal microflora abundance in mice was observed by 16S rDNA high-throughput sequencing. Results SD treatment inhibited the sneezing and rubbing times of the nose, decreased the degree of a dense arrangement of cells and mucosal swelling and the number of goblet and mast cells of nasal lavage fluid, reduced the levels of IgE, histamine, Leukotriene B4, IL-4, IL-5, TNF-α, IL-6, and IL-17, the eosinophils, neutrophils, and lymphocytes number, the LR4, TRAF6, IL-6, ROR-γt, and STAT3 mRNA levels, respectively, while, it increased the IL-2, IL-10, IFN-γ, and TGF-β1 proteins. SD treatment inhibited the NF-κB, p-STAT3, TLR4, TRAF6, and p-IκBα/IκBα proteins. Besides, the effects of OVA and SD treatments were significantly correlated with the abundance of intestinal microflora. The abundances of Cytophagales, Burkholderia, Alteromonadales, Lactococcus, and Clostridiaceae were changed in SD treatment on AR mice. Conclusions This study provides a possibility that the improvement effect of SD treatment on allergies and inflammation in AR mice may be related to the TLR4/TRAF6/NF-κB and IL-6/ROR-γt/STAT3 pathways and intestinal microflora modulation.
Collapse
|