1
|
Dong C, Wang Y, Cai Y, Wu Y, Chen W, Wang L, Liu X, Zou L, Wang J. Enhance the Antimycobacterial Activity of Streptomycin with Ebselen as an Antibiotic Adjuvant Through Disrupting Redox Homeostasis. Drug Des Devel Ther 2024; 18:3811-3824. [PMID: 39219694 PMCID: PMC11365518 DOI: 10.2147/dddt.s475535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Tuberculosis (TB) remains a major health threat worldwide, and the spread of drug-resistant (DR) TB impedes the reduction of the global disease burden. Ebselen (EbSe) targets bacterial thioredoxin reductase (bTrxR) and causes an imbalance in the redox status of bacteria. Previous work has shown that the synergistic action of bTrxR and sensitization to common antibiotics by EbSe is a promising strategy for the treatment of DR pathogens. Thus, we aimed to evaluate whether EbSe could enhance anti-TB drugs against Mycobacterium marinum (M. marinum) which is genetically related to Mycobacterium tuberculosis (Mtb) and resistant to many antituberculosis drugs. Methods Minimum inhibitory concentrations (MIC) of isoniazid (INH), rifampicin (RFP), and streptomycin (SM) against M. marinum were determined by microdilution. The Bliss Independence Model was used to determine the adjuvant effects of EbSe over the anti-TB drugs. Thioredoxin reductase activity was measured using the DTNB assay, and its effects on bacterial redox homeostasis were verified by the elevation of intracellular ROS levels and intracellular GSH levels. The adjuvant efficacy of EbSe as an anti-TB drug was further evaluated in a mouse model of M. marinum infection. Cytotoxicity was observed in the macrophage cells Raw264.7 and mice model. Results The results reveal that EbSe acts as an antibiotic adjuvant over SM on M. marinum. EbSe + SM disrupted the intracellular redox microenvironment of M. marinum by inhibiting bTrxR activity, which could rescue mice from the high bacterial load, and accelerated recovery from tail injury with low mammalian toxicity. Conclusion The above studies suggest that EbSe significantly enhanced the anti-Mtb effect of SM, and its synergistic combination showed low mammalian toxicity in vitro and in vivo. Further efforts are required to study the underlying mechanisms of EbSe as an antibiotic adjuvant in combination with anti-TB drug MS.
Collapse
Affiliation(s)
- Chuanjiang Dong
- Department of Urology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong province, 523718, People’s Republic of China
| | - Yueqing Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei Province, 443002, People’s Republic of China
- Yichang Key Laboratory of Infection and Inflammation, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei Province, 443002, People’s Republic of China
| | - Yi Cai
- Department of Laboratory Medicine, Xiaogan Central Hospital, Xiaogan, Hubei Province, 432099, People’s Republic of China
| | - Yuhuang Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei Province, 443002, People’s Republic of China
- Yichang Key Laboratory of Infection and Inflammation, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei Province, 443002, People’s Republic of China
| | - Wei Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei Province, 443002, People’s Republic of China
- Yichang Key Laboratory of Infection and Inflammation, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei Province, 443002, People’s Republic of China
| | - Lu Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei Province, 443002, People’s Republic of China
- Yichang Key Laboratory of Infection and Inflammation, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei Province, 443002, People’s Republic of China
| | - Xiaowen Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei Province, 443002, People’s Republic of China
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei Province, 443002, People’s Republic of China
- Yichang Key Laboratory of Infection and Inflammation, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei Province, 443002, People’s Republic of China
| | - Jun Wang
- The Second People’s Hospital of China Three Gorges University, Yichang, Hubei Province, 443002, People’s Republic of China
| |
Collapse
|
2
|
Alves de Lima e Silva A, Rio-Tinto A. Ebselen: A Promising Repurposing Drug to Treat Infections Caused by Multidrug-Resistant Microorganisms. Interdiscip Perspect Infect Dis 2024; 2024:9109041. [PMID: 38586592 PMCID: PMC10998725 DOI: 10.1155/2024/9109041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 04/09/2024] Open
Abstract
Bacterial multiresistance to drugs is a rapidly growing global phenomenon. New resistance mechanisms have been described in different bacterial pathogens, threatening the effective treatment of even common infectious diseases. The problem worsens in infections associated with biofilms because, in addition to the pathogen's multiresistance, the biofilm provides a barrier that prevents antimicrobial access. Several "non-antibiotic" drugs have antimicrobial activity, even though it is not their primary therapeutic purpose. However, due to the urgent need to develop effective antimicrobials to treat diseases caused by multidrug-resistant pathogens, there has been an increase in research into "non-antibiotic" drugs to offer an alternative therapy through the so-called drug repositioning or repurposing. The prospect of new uses for existing drugs has the advantage of reducing the time and effort required to develop new compounds. Moreover, many drugs are already well characterized regarding toxicity and pharmacokinetic/pharmacodynamic properties. Ebselen has shown promise for use as a repurposing drug for antimicrobial purposes. It is a synthetic organoselenium with anti-inflammatory, antioxidant, and cytoprotective activity. A very attractive factor for using ebselen is that, in addition to potent antimicrobial activity, its minimum inhibitory concentration is very low for microbial pathogens.
Collapse
Affiliation(s)
- Agostinho Alves de Lima e Silva
- Laboratory of Biology and Physiology of Microorganisms, Biomedical Institute, DMP, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-030, Brazil
| | - André Rio-Tinto
- Laboratory of Pathogenic Cocci and Microbiota, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-853, Brazil
| |
Collapse
|
3
|
Ouyang Y, Tang X, Zhao Y, Zuo X, Ren X, Wang J, Zou L, Lu J. Disruption of Bacterial Thiol-Dependent Redox Homeostasis by Magnolol and Honokiol as an Antibacterial Strategy. Antioxidants (Basel) 2023; 12:1180. [PMID: 37371909 DOI: 10.3390/antiox12061180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Some traditional Chinese medicines (TCMs) possess various redox-regulation properties, but whether the redox regulation contributes to antibacterial mechanisms is not known. Here, ginger juice processed Magnoliae officinalis cortex (GMOC) was found to show strong antibacterial activities against some Gram-positive bacteria, but not Gram-negative bacteria including E. coli, while the redox-related transcription factor oxyR deficient E. coli mutant was sensitive to GMOC. In addition, GMOC and its main ingredients, magnolol and honokiol, exhibited inhibitory effects on the bacterial thioredoxin (Trx) system, a major thiol-dependent disulfide reductase system in bacteria. The effects of magnolol and honokiol on cellular redox homeostasis were further verified by elevation of the intracellular ROS levels. The therapeutic efficacies of GMOC, magnolol and honokiol were further verified in S. aureus-caused mild and acute peritonitis mouse models. Treatments with GMOC, magnolol and honokiol significantly reduced the bacterial load, and effectively protected the mice from S. aureus-caused peritonitis infections. Meanwhile, magnolol and honokiol produced synergistic effects when used in combination with several classic antibiotics. These results strongly suggest that some TCMs may exert their therapeutic effects via targeting the bacterial thiol-dependent redox system.
Collapse
Affiliation(s)
- Yanfang Ouyang
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xuewen Tang
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ying Zhao
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xin Zuo
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jun Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
| | - Jun Lu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Chen H, Lu Q, An H, Li J, Shen S, Zheng X, Chen W, Wang L, Li J, Du Y, Wang Y, Liu X, Baumann M, Tacke M, Zou L, Wang J. The synergistic activity of SBC3 in combination with Ebselen against Escherichia coli infection. Front Pharmacol 2022; 13:1080281. [PMID: 36588729 PMCID: PMC9797518 DOI: 10.3389/fphar.2022.1080281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Escherichia coli ranks as the number one clinical isolate in the past years in China according to The China Antimicrobial Surveillance Network (CHINET), and its multidrug-resistant (MDR) pathogenic strains account for over 160 million cases of dysentery and one million deaths per year. Here, our work demonstrates that E. coli is highly sensitive to the synergistic combination of SBC3 [1,3-Dibenzyl-4,5-diphenyl-imidazol-2-ylidene silver (I) acetate] and Ebselen, which shows no synergistic toxicity on mammalian cells. The proposed mechanism for the synergistic antibacterial effect of SBC3 in combination with Ebselen is based on directly inhibiting E. coli thioredoxin reductase and rapidly depleting glutathione, resulting in the increase of reactive oxygen species that cause bacterial cell death. Furthermore, the bactericidal efficacy of SBC3 in combination with Ebselen has been confirmed in mild and acute peritonitis mice. In addition, the five most difficult to treat Gram-negative bacteria (including E. coli, Acinetobacter baumannii, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa) are also highly sensitive to a synergistic combination of SBC3 and Ebselen. Thus, SBC3 in combination with Ebselen has potential as a treatment for clinically important Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Hao Chen
- The Second People’s Hospital of China Three Gorges University, Yichang, Hubei, China,The Second People’s Hospital of Yichang, Yichang, Hubei, China
| | - Qianqian Lu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Haoyue An
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Juntong Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Shuchu Shen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Xi Zheng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Wei Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Lu Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Jihong Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Youqin Du
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yueqing Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Xiaowen Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Marcus Baumann
- The School of Chemistry, University College Dublin, Belfield, Dublin, Ireland
| | - Matthias Tacke
- The School of Chemistry, University College Dublin, Belfield, Dublin, Ireland,*Correspondence: Lili Zou, ; Jun Wang, ; Matthias Tacke,
| | - Lili Zou
- The Second People’s Hospital of China Three Gorges University, Yichang, Hubei, China,The Second People’s Hospital of Yichang, Yichang, Hubei, China,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,*Correspondence: Lili Zou, ; Jun Wang, ; Matthias Tacke,
| | - Jun Wang
- The People’s Hospital of China Three Gorges University, Yichang, Hubei, China,*Correspondence: Lili Zou, ; Jun Wang, ; Matthias Tacke,
| |
Collapse
|