1
|
Kos D, Schreiner B, Thiessen S, McAllister T, Jelinski M, Ruzzini A. Insight into antimicrobial resistance at a new beef cattle feedlot in western Canada. mSphere 2023; 8:e0031723. [PMID: 37855607 PMCID: PMC10732036 DOI: 10.1128/msphere.00317-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE A better understanding of how environmental reservoirs of ARGs in the feedlot relate to those found in animal pathogens will help inform and improve disease management, treatment strategies, and outcomes. Monitoring individual cattle or small groups is invasive, logistically challenging, expensive, and unlikely to gain adoption by the beef cattle industry. Wastewater surveillance has become standard in public health studies and has inspired similar work to better our understanding of AMR in feedlots. We derived our insights from sampling water bowls in a newly established feedlot: a unique opportunity to observe AMR prior to animal arrival and to monitor its development over 2 months. Importantly, the bacterial community of a single water bowl can be influenced by direct contact with hundreds of animals. Our results suggest that water bowl microbiomes are economical and pragmatic sentinels for monitoring relevant AMR mechanisms.
Collapse
Affiliation(s)
- Daniel Kos
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Brittany Schreiner
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Tim McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Murray Jelinski
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Antonio Ruzzini
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Lee C, Zaheer R, Munns K, Holman DB, Van Domselaar G, Zovoilis A, McAllister TA. Effect of Antimicrobial Use in Conventional Versus Natural Cattle Feedlots on the Microbiome and Resistome. Microorganisms 2023; 11:2982. [PMID: 38138126 PMCID: PMC10745953 DOI: 10.3390/microorganisms11122982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Antimicrobial use (AMU) in the livestock industry has been associated with increased levels of antimicrobial resistance. Recently, there has been an increase in the number of "natural" feedlots in the beef cattle sector that raise cattle without antibiotics. Shotgun metagenomics was employed to characterize the impact of AMU in feedlot cattle on the microbiome, resistome, and mobilome. Sequenced fecal samples identified a decline (q < 0.01) in the genera Methanobrevibacter and Treponema in the microbiome of naturally vs. conventionally raised feedlot cattle, but this difference was not (q > 0.05) observed in catch basin samples. No differences (q > 0.05) were found in the class-level resistome between feedlot practices. In fecal samples, decreases from conventional to natural (q < 0.05) were noted in reads for the antimicrobial-resistant genes (ARGs) mefA, tet40, tetO, tetQ, and tetW. Plasmid-associated ARGs were more common in feces from conventional than natural feedlot cattle. Interestingly, more chromosomal- than plasmid-associated macrolide resistance genes were observed in both natural and conventional feedlots, suggesting that they were more stably conserved than the predominately plasmid-associated tetracycline resistance genes. This study suggests that generationally selected resistomes through decades of AMU persist even after AMU ceases in natural production systems.
Collapse
Affiliation(s)
- Catrione Lee
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (C.L.); (R.Z.); (K.M.)
- Southern Alberta Genomic Sciences Centre, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada;
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (C.L.); (R.Z.); (K.M.)
| | - Krysty Munns
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (C.L.); (R.Z.); (K.M.)
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 6000 C and E Trail, Lacombe, AB T4L 1W1, Canada;
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Government of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada;
| | - Athanasios Zovoilis
- Southern Alberta Genomic Sciences Centre, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada;
| | - Tim A. McAllister
- Southern Alberta Genomic Sciences Centre, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada;
| |
Collapse
|