1
|
Parlindungan E, Sadovskaya I, Vinogradov E, Lugli GA, Ventura M, van Sinderen D, Mahony J. Novel cell wall polysaccharide genotypes and structures of lactococcal strains isolated from milk and fermented foods. Int J Food Microbiol 2024; 424:110840. [PMID: 39126753 DOI: 10.1016/j.ijfoodmicro.2024.110840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
The biosynthetic machinery for cell wall polysaccharide (CWPS) formation in Lactococcus lactis and Lactococcus cremoris is encoded by the cwps locus. The CWPS of lactococci typically consists of a neutral rhamnan component, which is embedded in the peptidoglycan, and to which a surface-exposed side chain oligosaccharide or polysaccharide pellicle (PSP) component is attached. The rhamnan component has been shown for several lactococcal strains to consist of a repeating rhamnose trisaccharide subunit, while the side chain is diverse in glycan content, polymeric status and glycosidic linkage architecture. The observed structural diversity of the CWPS side chain among lactococcal strains is reflected in the genetic diversity within the variable 3' region of the corresponding cwps loci. To date, four distinct cwps genotypes (A, B, C, D) have been identified, while eight subtypes (C1 through to C8) have been recognized among C-genotype strains. In the present study, we report the identification of three novel subtypes of the lactococcal cwps C genotypes, named C9, C10 and C11. The CWPS of four isolates representing C7, C9, C10 and C11 genotypes were analysed using 2D NMR to reveal their unique CWPS structures. Through this analysis, the structure of one novel rhamnan, three distinct PSPs and three exopolysaccharides were elucidated. Results obtained in this study provide further insights into the complex nature and fascinating diversity of lactococcal CWPSs. This highlights the need for a holistic view of cell wall-associated glycan structures which may contribute to robustness of certain strains against infecting bacteriophages. This has clear implications for the fermented food industry that relies on the consistent application of lactococcal strains in mesophilic production systems.
Collapse
Affiliation(s)
- Elvina Parlindungan
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland
| | - Irina Sadovskaya
- Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200 Boulogne-sur-Mer, France
| | - Evgeny Vinogradov
- National Research Council Canada, Institute for Biological Sciences, Ottawa, ON, Canada
| | - Gabriele A Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43121 Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43121 Parma, Italy
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland.
| |
Collapse
|
2
|
Seiler J, Millen A, Romero DA, Magill D, Simdon L. Novel P335-like Phage Resistance Arises from Deletion within Putative Autolysin yccB in Lactococcus lactis. Viruses 2023; 15:2193. [PMID: 38005870 PMCID: PMC10675428 DOI: 10.3390/v15112193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Lactococcus lactis and Lactococcus cremoris are broadly utilized as starter cultures for fermented dairy products and are inherently impacted by bacteriophage (phage) attacks in the industrial environment. Consequently, the generation of bacteriophage-insensitive mutants (BIMs) is a standard approach for addressing phage susceptibility in dairy starter strains. In this study, we characterized spontaneous BIMs of L. lactis DGCC12699 that gained resistance against homologous P335-like phages. Phage resistance was found to result from mutations in the YjdB domain of yccB, a putative autolysin gene. We further observed that alteration of a fused tail-associated lysin-receptor binding protein (Tal-RBP) in the phage restored infectivity on the yccB BIMs. Additional investigation found yccB homologs to be widespread in L. lactis and L. cremoris and that different yccB homologs are highly correlated with cell wall polysaccharide (CWPS) type/subtype. CWPS are known lactococcal phage receptors, and we found that truncation of a glycosyltransferase in the cwps operon also resulted in resistance to these P335-like phages. However, characterization of the CWPS mutant identified notable differences from the yccB mutants, suggesting the two resistance mechanisms are distinct. As phage resistance correlated with yccB mutation has not been previously described in L. lactis, this study offers insight into a novel gene involved in lactococcal phage sensitivity.
Collapse
Affiliation(s)
- Jenny Seiler
- IFF, Madison, WI 53716, USA; (A.M.); (D.A.R.); (L.S.)
| | - Anne Millen
- IFF, Madison, WI 53716, USA; (A.M.); (D.A.R.); (L.S.)
| | | | | | - Laura Simdon
- IFF, Madison, WI 53716, USA; (A.M.); (D.A.R.); (L.S.)
| |
Collapse
|
3
|
Millen AM, Magill D, Romero D, Simdon L. Evolved distal tail protein of skunaviruses facilitates adsorption to exopolysaccharide-encoding lactococci. MICROBIOME RESEARCH REPORTS 2023; 2:26. [PMID: 38045920 PMCID: PMC10688798 DOI: 10.20517/mrr.2023.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/29/2023] [Indexed: 12/05/2023]
Abstract
Aim: Lactococcal skunaviruses are diverse and problematic in the industrial dairy environment. Host recognition involves the specific interaction of phage-encoded proteins with saccharidic host cell surface structures. Lactococcal plasmid pEPS6073 encodes genes required for the biosynthesis of a cell surface-associated exopolysaccharide (EPS), designated 6073-like. Here, the impact of this EPS on Skunavirus sensitivity was assessed. Methods: Conjugal transfer of pEPS6073 into two model strains followed by phage plaque assays and adsorption assays were performed to assess its effect on phage sensitivity. Phage distal tail proteins were analyzed bioinformatically using HHpred and modeling with AlphaFold. Construction of recombinant phages carrying evolved Dits was performed by supplying a plasmid-encoded template for homologous recombination. Results: pEPS6073 confers resistance against a subset of skunaviruses via adsorption inhibition. IFF collection skunaviruses that infect strains encoding the 6073-like eps gene cluster carry insertions in their distal tail protein-encoding (dit) genes that result in longer Dit proteins (so-called evolved Dits), which encode carbohydrate-binding domains. Three skunaviruses with classical Dits (no insertion) were unable to fully infect their hosts following the conjugal introduction of pEPS6073, showing reductions in both adsorption and efficiency of plaquing. Cloning the evolved Dit into these phages enabled full infectivity on their host strains, both wild type and transconjugant carrying pEPS6073, with recombinant phages adsorbing slightly better to the EPS+ host than wild type. Conclusion: The 6073-like EPS potentially occludes the phage receptor for skunaviruses that encode a classical Dit protein. Skunaviruses that infect strains encoding the 6073-like EPS harbor evolved Dits, which likely help promote phage adsorption rather than just allow the phage to circumvent the putative EPS barrier. This work furthers our knowledge of phage-host interactions in Lactococcus and proposes a role for insertions in the Dit proteins of a subset of skunaviruses.
Collapse
Affiliation(s)
| | - Damian Magill
- Health and Biosciences, IFF, Dangé-Saint-Romain 86220, France
| | | | - Laura Simdon
- Health and Biosciences, IFF, Madison, WI 53716, USA
| |
Collapse
|
4
|
Ruiz-Cruz S, Sadovskaya I, Mahony J, Grard T, Chapot-Chartier MP, van Sinderen D, Vinogradov E. Structural studies of the deacylated glycolipids and lipoteichoic acid of Lactococcus cremoris 3107. Carbohydr Res 2023; 531:108898. [PMID: 37453325 DOI: 10.1016/j.carres.2023.108898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Lactococcus cremoris and Lactococcus lactis are among the most extensively exploited species of lactic acid bacteria in dairy fermentations. The cell wall of lactococci, like other Gram-positive bacteria, possesses a thick peptidoglycan layer, which may incorporate cell wall polysaccharides (CWPS), wall teichoic acids (WTA), and/or lipoteichoic acids (LTA). In this study, we report the isolation, purification and structural analysis of the carbohydrate moieties of glycolipids (GL) and LTA of the L. cremoris model strain 3107. Chemical structures of these compounds were studied by chemical methods, NMR spectroscopy and positive and negative mode ESI MS. We found that the LTA of strain 3107 is composed of short chains of 1,3-polyglycerol phosphate (PGP), attached to O-6 of the non-reducing glucose of the kojibiose-Gro backbone of the glycolipid anchor. Extraction of cells with cold TCA afforded the detection of 1,3-glycerol phosphate chains randomly substituted at O-2 of glycerol by D-Ala. Unlike the LTA of L. lactis strains studied to date, the PGP backbone of the LTA of L. cremoris 3107 did not carry any glycosyl substitution. The deacylated glycolipid fraction contained the free kojibiose-Gro oligosaccharide, identical to the backbone of the GL anchor of LTA, and its shorter fragment α-Glc-1-Gro. These OS may have originated from the GL precursors of LTA biosynthesis.
Collapse
Affiliation(s)
- Sofía Ruiz-Cruz
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Irina Sadovskaya
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Thierry Grard
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
| | | | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Evguenii Vinogradov
- National Research Council Canada, 100 Sussex Dr, Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
5
|
Tang H, Huang W, Yao YF. The metabolites of lactic acid bacteria: classification, biosynthesis and modulation of gut microbiota. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:49-62. [PMID: 36908281 PMCID: PMC9993431 DOI: 10.15698/mic2023.03.792] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 03/14/2023]
Abstract
Lactic acid bacteria (LAB) are ubiquitous microorganisms that can colonize the intestine and participate in the physiological metabolism of the host. LAB can produce a variety of metabolites, including organic acids, bacteriocin, amino acids, exopolysaccharides and vitamins. These metabolites are the basis of LAB function and have a profound impact on host health. The intestine is colonized by a large number of gut microorganisms with high species diversity. Metabolites of LAB can keep the balance and stability of gut microbiota through aiding in the maintenance of the intestinal epithelial barrier, resisting to pathogens and regulating immune responses, which further influence the nutrition, metabolism and behavior of the host. In this review, we summarize the metabolites of LAB and their influence on the intestine. We also discuss the underlying regulatory mechanisms and emphasize the link between LAB and the human gut from the perspective of health promotion.
Collapse
Affiliation(s)
- Huang Tang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wanqiu Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Feng Yao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Infectious Diseases, Shanghai Ruijin Hospital, Shanghai 200025, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases (20dz2261100), Shanghai 200025, China
| |
Collapse
|