1
|
Mahmud HA, Wakeman CA. Navigating collateral sensitivity: insights into the mechanisms and applications of antibiotic resistance trade-offs. Front Microbiol 2024; 15:1478789. [PMID: 39512935 PMCID: PMC11540712 DOI: 10.3389/fmicb.2024.1478789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
The swift rise of antibiotic resistance, coupled with limited new antibiotic discovery, presents a significant hurdle to global public health, demanding innovative therapeutic solutions. Recently, collateral sensitivity (CS), the phenomenon in which resistance to one antibiotic increases vulnerability to another, has come to light as a potential path forward in this attempt. Targeting either unidirectional or reciprocal CS holds promise for constraining the emergence of drug resistance and notably enhancing treatment outcomes. Typically, the alteration of bacterial physiology, such as bacterial membrane potential, expression of efflux pumps, cell wall structures, and endogenous enzymatic actions, are involved in evolved collateral sensitivity. In this review, we present a thorough overview of CS in antibiotic therapy, including its definition, importance, and underlying mechanisms. We describe how CS can be exploited to prevent the emergence of resistance and enhance the results of treatment, but we also discuss the challenges and restrictions that come with implementing this practice. Our review underscores the importance of continued exploration of CS mechanisms in the broad spectrum and clinical validation of therapeutic approaches, offering insights into its role as a valuable tool in combating antibiotic resistance.
Collapse
Affiliation(s)
- Hafij Al Mahmud
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Catherine A. Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
2
|
Barrault M, Chabelskaya S, Coronel-Tellez R, Toffano-Nioche C, Jacquet E, Bouloc P. Staphylococcal aconitase expression during iron deficiency is controlled by an sRNA-driven feedforward loop and moonlighting activity. Nucleic Acids Res 2024; 52:8241-8253. [PMID: 38869061 PMCID: PMC11317140 DOI: 10.1093/nar/gkae506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Pathogenic bacteria employ complex systems to cope with metal ion shortage conditions and propagate in the host. IsrR is a regulatory RNA (sRNA) whose activity is decisive for optimum Staphylococcus aureus fitness upon iron starvation and for full virulence. IsrR down-regulates several genes encoding iron-containing enzymes to spare iron for essential processes. Here, we report that IsrR regulates the tricarboxylic acid (TCA) cycle by controlling aconitase (CitB), an iron-sulfur cluster-containing enzyme, and its transcriptional regulator, CcpE. This IsrR-dependent dual-regulatory mechanism provides an RNA-driven feedforward loop, underscoring the tight control required to prevent aconitase expression. Beyond its canonical enzymatic role, aconitase becomes an RNA-binding protein with regulatory activity in iron-deprived conditions, a feature that is conserved in S. aureus. Aconitase not only negatively regulates its own expression, but also impacts the enzymes involved in both its substrate supply and product utilization. This moonlighting activity concurrently upregulates pyruvate carboxylase expression, allowing it to compensate for the TCA cycle deficiency associated with iron scarcity. These results highlight the cascade of complex posttranscriptional regulations controlling S. aureus central metabolism in response to iron deficiency.
Collapse
Affiliation(s)
- Maxime Barrault
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Svetlana Chabelskaya
- Université de Rennes 1, BRM (Bacterial regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Rodrigo H Coronel-Tellez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Claire Toffano-Nioche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Eric Jacquet
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR2301, 91198 Gif-sur-Yvette, France
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Vanderpool EJ, Rumbaugh KP. Host-microbe interactions in chronic rhinosinusitis biofilms and models for investigation. Biofilm 2023; 6:100160. [PMID: 37928619 PMCID: PMC10622848 DOI: 10.1016/j.bioflm.2023.100160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a debilitating condition characterized by long-lasting inflammation of the paranasal sinuses. It affects a significant portion of the population, causing a considerable burden on individuals and healthcare systems. The pathogenesis of CRS is multifactorial, with bacterial infections playing a crucial role in CRS development and persistence. In recent years, the presence of biofilms has emerged as a key contributor to the chronicity of sinusitis, further complicating treatment and exacerbating symptoms. This review aims to explore the role of biofilms in CRS, focusing on the involvement of the bacterial species Staphylococcus aureus and Pseudomonas aeruginosa, their interactions in chronic infections, and model systems for studying biofilms in CRS. These species serve as an example of how microbial interplay can influence disease progression and exemplify the need for continued investigation and innovation in CRS research.
Collapse
Affiliation(s)
- Emily J. Vanderpool
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kendra P. Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
4
|
Giedraitienė A, Ružauskas M, Šiugždinienė R, Tučkutė S, Grigonis K, Milčius D. Development of Antibacterial Cotton Textiles by Deposition of Fe 2O 3 Nanoparticles Using Low-Temperature Plasma Sputtering. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3106. [PMID: 38133003 PMCID: PMC10745305 DOI: 10.3390/nano13243106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Antibacterial textiles can help prevent infections from antimicrobial-resistant pathogens without using antibiotics. This work aimed to enhance the cotton fabric's antimicrobial properties by depositing Fe2O3 nanoparticles on both sides of its surface. The nanoparticles were deposited using low-temperature plasma technology in a pure oxygen atmosphere, which is environmentally friendly. The Fe2O3 nanoparticles formed clusters on the fabric surface, rather than thin films that could reduce the airflow of the textile. The optimal conditions for the nanoparticle deposition were 200 W of plasma power, 120 min of immersion time, and 5 cm of Fe cathode-textile sample distance. The received antimicrobial textile was tested and the high efficiency of developed materials were successfully demonstrated against 16 microbial strains (Gram-positive and Gram-negative bacteria and fungi).
Collapse
Affiliation(s)
- Agnė Giedraitienė
- Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (M.R.); (R.Š.)
| | - Modestas Ružauskas
- Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (M.R.); (R.Š.)
| | - Rita Šiugždinienė
- Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (M.R.); (R.Š.)
| | - Simona Tučkutė
- Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, LT-44403 Kaunas, Lithuania;
| | | | - Darius Milčius
- Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, LT-44403 Kaunas, Lithuania;
| |
Collapse
|
5
|
Zou H, Li Q, Su Y, Zhang L, Zhang X, Li C. Persistent ciprofloxacin exposure induced the transformation of Klebsiella pneumoniae small colony variant into mucous phenotype. Front Cell Infect Microbiol 2023; 13:1259296. [PMID: 37928182 PMCID: PMC10625421 DOI: 10.3389/fcimb.2023.1259296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Small colony variant (SCV) is a bacterial phenotype closely related to persistent and recurrent infections. SCVs are mutations that occur within bacterial populations, resulting in a change in bacterial morphology and the formation of small colonies. This morphological change may enhance bacterial resistance to antibiotics and contribute to persistent and recurrent infections. Methods We isolated Klebsiella pneumoniae (KPN) and its SCV from a child with recurrent respiratory tract infections. KPN and SCV were treated with subinhibitory concentrations of antibiotics. growth curves, serum resistance experiments, macrophage phagocytosis experiments and whole genome sequencing were used to characterize KPN and SCV. Results After treating KPN and SCV with subinhibitory concentrations of antibiotics, we found that ciprofloxacin induced the SCV transition to the mucoid phenotype. We found that the growth of mucoid Klebsiella pneumoniae was significantly slower than maternal strain and SCV though growth curves. Serum resistance experiments showed that mucoid strains had significantly higher serum resistance compared to maternal strain and SCV. Macrophage phagocytosis experiments revealed that SCV had significantly higher intracellular survival rates compared to maternal strain and mucoid strains. Differential gene analysis of three strains revealed that the mucoid strain contained DNA polymerase V subunit UmuC gene on the plasmid, while the SCV strain had an additional IcmK family IV secretion protein on its plasmid. Discussion Our study showed the SCV of KPN changed to a mucoid colony when exposed to subinhibitory concentrations of ciprofloxacin. The higher resistance of serum of mucoid colonies was possibly related to the UmuC gene, while the increased intracellular survival of SCV may be related to the IcmK family type IV secretion proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunli Li
- Department of Laboratory Medicine, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Bogut A, Koper P, Marczak M, Całka P. The first genomic characterization of a stable, hemin-dependent small colony variant strain of Staphylococcus epidermidis isolated from a prosthetic-joint infection. Front Microbiol 2023; 14:1289844. [PMID: 37928677 PMCID: PMC10620731 DOI: 10.3389/fmicb.2023.1289844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Phenotype switching from a wild type (WT) to a slow-growing subpopulation, referred to as small colony variants (SCVs), supports an infectious lifestyle of Staphylococcus epidermidis, the leading cause of medical device-related infections. Specific mechanisms underlying formation of SCVs and involved in the shaping of their pathogenic potential are of particular interest for stable strains as they have been only rarely cultured from clinical specimens. As the SCV phenotype stability implies the existence of genetic changes, the whole genome sequence of a stable, hemin-dependent S. epidermidis SCV strain (named 49SCV) involved in a late prosthetic joint infection was analyzed. The strain was isolated in a monoculture without a corresponding WT clone, therefore, its genome was compared against five reference S. epidermidis strains (ATCC12228, ATCC14990, NBRC113846, O47, and RP62A), both at the level of the genome structure and coding sequences. According to the Multilocus Sequence Typing analysis, the 49SCV strain represented the sequence type 2 (ST2) regarded as the most prominent infection-causing lineage with a worldwide dissemination. Genomic features unique to 49SCV included the absence of the Staphylococcal Cassette Chromosome (SCC), ~12 kb deletion with the loss of genes involved in the arginine deiminase pathway, and frameshift-generating mutations within the poly(A) and poly(T) homopolymeric tracts. Indels were identified in loci associated with adherence, metabolism, stress response, virulence, and cell wall synthesis. Of note, deletion in the poly(A) of the hemA gene has been considered a possible trigger factor for the phenotype transition and hemin auxotrophy in the strain. To our knowledge, the study represents the first genomic characterization of a clinical, stable and hemin-dependent S. epidermidis SCV strain. We propose that previously unreported indels in the homopolymeric tracts can constitute a background of the SCV phenotype due to a resulting truncation of the corresponding proteins and their possible biological dysfunction. Streamline of genetic content evidenced by the loss of the SCC and a large genomic deletion can represent a possible strategy associated both with the SCV phenotype and its adaptation to chronicity.
Collapse
Affiliation(s)
- Agnieszka Bogut
- Chair and Department of Medical Microbiology, Medical University of Lublin, Lublin, Poland
| | - Piotr Koper
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Małgorzata Marczak
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Paulina Całka
- Chair and Department of Forensic Medicine, Medical University of Lublin, Lublin, Poland
| |
Collapse
|