1
|
Lee HJ, Tran MTH, Le MH, Justine EE, Kim YJ. Paraprobiotic derived from Bacillus velezensis GV1 improves immune response and gut microbiota composition in cyclophosphamide-treated immunosuppressed mice. Front Immunol 2024; 15:1285063. [PMID: 38455053 PMCID: PMC10918466 DOI: 10.3389/fimmu.2024.1285063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024] Open
Abstract
Paraprobiotics that benefit human health have the capacity to modulate innate and adaptive immune systems. In this study, we prepared the paraprobiotic from Bacillus velezensis GV1 using the heat-killing method and investigated its effects on immunity and gut microbiota in vitro and in vivo. The morphology of inactivated strain GV1 was observed using scanning electron microscopy. Treatment with GV1 promoted nitric oxide production and augmented cytokine (IL-6, IL-1β, and TNF-α) expression and secretion in RAW 264.7 macrophages. Moreover, the strain GV1 could alleviate cyclophosphamide monohydrate (CTX)-induced immunosuppression by reversing spleen damage and restoring the immune organ index, as well as by increasing the expression of immune-related cytokines (TNF-α, IL-1β, IFN-γ, and IL-2) in the spleen and thymus, respectively. Furthermore, GV1 treatment dramatically healed the CTX-damaged colon and regulated gut microbiota by increasing the relative abundance of beneficial bacterial families (Lactobacillaceae, Akkermansiaceae, and Coriobacteriaceae) and decreasing that of harmful bacterial families (Desulfovibrionaceae, Erysipelotrichaceae, and Staphylococcaceae). Thus, the heat-killed GV1 can be considered a potential immunoregulatory agent for use as a functional food or immune-enhancing medicine.
Collapse
Affiliation(s)
| | | | | | | | - Yeon-Ju Kim
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Yin R, Wang T, Dai H, Han J, Sun J, Liu N, Dong W, Zhong J, Liu H. Immunogenic molecules associated with gut bacterial cell walls: chemical structures, immune-modulating functions, and mechanisms. Protein Cell 2023; 14:776-785. [PMID: 37013853 PMCID: PMC10599643 DOI: 10.1093/procel/pwad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/25/2023] [Indexed: 04/05/2023] Open
Abstract
Interactions between gut microbiome and host immune system are fundamental to maintaining the intestinal mucosal barrier and homeostasis. At the host-gut microbiome interface, cell wall-derived molecules from gut commensal bacteria have been reported to play a pivotal role in training and remodeling host immune responses. In this article, we review gut bacterial cell wall-derived molecules with characterized chemical structures, including peptidoglycan and lipid-related molecules that impact host health and disease processes via regulating innate and adaptive immunity. Also, we aim to discuss the structures, immune responses, and underlying mechanisms of these immunogenic molecules. Based on current advances, we propose cell wall-derived components as important sources of medicinal agents for the treatment of infection and immune diseases.
Collapse
Affiliation(s)
- Ruopeng Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzu Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningning Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wang Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Lactiplantibacillus plantarum LOC1 Isolated from Fresh Tea Leaves Modulates Macrophage Response to TLR4 Activation. Foods 2022. [DOI: 10.3390/foods11203257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previously, we demonstrated that Lactiplantibacillus plantarum LOC1, originally isolated from fresh tea leaves, was able to improve epithelial barrier integrity in in vitro models, suggesting that this strain is an interesting probiotic candidate. In this work, we aimed to continue characterizing the potential probiotic properties of the LOC1 strain, focusing on its immunomodulatory properties in the context of innate immunity triggered by Toll-like receptor 4 (TLR4) activation. These studies were complemented by comparative and functional genomics analysis to characterize the bacterial genes involved in the immunomodulatory capacity. We carried out a transcriptomic study to evaluate the effect of L. plantarum LOC1 on the response of murine macrophages (RAW264.7 cells) to the activation of TLR4. We demonstrated that L. plantarum LOC1 exerts a modulatory effect on lipopolysaccharide (LPS)-induced inflammation, resulting in a differential regulation of immune factor expression in macrophages. The LOC1 strain markedly reduced the LPS-induced expression of some inflammatory cytokines (IL-1β, IL-12, and CSF2) and chemokines (CCL17, CCL28, CXCL3, CXCL13, CXCL1, and CX3CL1), while it significantly increased the expression of other cytokines (TNF-α, IL-6, IL-18, IFN-β, IFN-γ, and CSF3), chemokines (IL-15 and CXCL9), and activation markers (H2-k1, H2-M3, CD80, and CD86) in RAW macrophages. Our results show that L. plantarum LOC1 would enhance the intrinsic functions of macrophages, promoting their protective effects mediated by the stimulation of the Th1 response without affecting the regulatory mechanisms that help control inflammation. In addition, we sequenced the LOC1 genome and performed a genomic characterization. Genomic comparative analysis with the well-known immunomodulatory strains WCSF1 and CRL1506 demonstrated that L. plantarum LOC1 possess a set of adhesion factors and genes involved in the biosynthesis of teichoic acids and lipoproteins that could be involved in its immunomodulatory capacity. The results of this work can contribute to the development of immune-related functional foods containing L. plantarum LOC1.
Collapse
|