1
|
Huang Y, Shan X, Zhang C, Duan Y. Pseudomonas protegens volatile organic compounds inhibited brown rot of postharvest peach fruit by repressing the pathogenesis-related genes in Monilinia fructicola. Food Microbiol 2024; 122:104551. [PMID: 38839219 DOI: 10.1016/j.fm.2024.104551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024]
Abstract
Brown rot, caused by Monilinia fructicola, is considered one of the devasting diseases of pre-harvest and post-harvest peach fruits, restricting the yield and quality of peach fruits and causing great economic losses to the peach industry every year. Presently, the management of the disease relies heavily on chemical control. In the study, we demonstrated that the volatile organic compounds (VOCs) of endophyte bacterial Pseudomonas protegens QNF1 inhibited the mycelial growth of M. fructicola by 95.35% compared to the control, thereby reducing the brown rot on postharvest fruits by 98.76%. Additionally, QNF1 VOCs severely damaged the mycelia of M. fructicola. RNA-seq analysis revealed that QNF1 VOCs significantly repressed the expressions of most of the genes related to pathogenesis (GO:0009405) and integral component of plasma membrane (GO:0005887), and further analysis revealed that QNF1 VOCs significantly altered the expressions of the genes involved in various metabolism pathways including Amino acid metabolism, Carbohydrate metabolism, and Lipid metabolism. The findings of the study indicated that QNF1 VOCs displayed substantial control efficacy by disrupting the mycelial morphology of M. fructicola, weakening its pathogenesis, and causing its metabolic disorders. The study provided a potential way and theoretical support for the management of the brown rot of peach fruits.
Collapse
Affiliation(s)
- Yonghong Huang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China; National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China; Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China.
| | - Xiaoying Shan
- College of Horticulture, Qingdao Agricultural University, Qingdao, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China; National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China; Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Cuifang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China; National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China; Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Yanxin Duan
- College of Horticulture, Qingdao Agricultural University, Qingdao, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China; National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China; Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China.
| |
Collapse
|
2
|
Ni Y, Liao Q, Gou S, Shi T, Li W, Feng R, Zhao Z, Zhao X. Study on Enzyme Activity and Metabolomics during Culture of Liquid Spawn of Floccularia luteovirens. J Fungi (Basel) 2024; 10:618. [PMID: 39330377 PMCID: PMC11433261 DOI: 10.3390/jof10090618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
To comprehensively investigate the physiological characteristics and metabolic processes of the mycelium of Floccularia luteovirens (F. luteovirens), a wild edible fungus unique to the plateau region, we conducted an in-depth analysis of the mycelium enzyme activity and metabolites during different culture periods. The activity of seven enzymes all followed a trend of initially increasing and then decreasing. The intra- and extracellular activity peaks of three hydrolases-amylase, protease, and cellulase-all occurred on the 20th day, except for the extracellular amylase, which peaked on the 15th day. In contrast, the peak activity of laccase occurred on the 10th day. Moreover, three types of oxidoreductases in the mycelium (catalase (CAT), superoxide dismutase (SOD), and 2,3,5-triphenyltetrazolium chloride (TTC)-dehydrogenase (TTC-DH)) also exhibited significant changes in activity. CAT and SOD activity reached their maximum on the 20th day, whereas TTC-DH showed high activity on both the 10th and 20th days. Through a comprehensive assessment of the evolving trends of these physiological parameters, we determined that the optimal cultivation cycle for F. luteovirens liquid spawn is 20 days. An untargeted metabolomic analysis revealed that 3569 metabolites were detected in the F. luteovirens mycelium, including a variety of secondary metabolites and functional components, with terpenoids being particularly abundant, accounting for 148 types. By comparing three different culture stages (10 days, 20 days, and 30 days), 299, 291, and 381 metabolites, respectively, showed different accumulation patterns in the comparison groups of 10d vs. 20d, 20d vs. 30d, and 10d vs. 30d. These differential metabolites were primarily concentrated in carboxylic acids and their derivatives, fatty acyl groups, organic oxygen compounds, and lipid compounds. In addition, there were several amino acids whose abundance continued to grow during culturing. The metabolism of amino acids greatly affects mycelium growth and development. This research delineates the interplay between mycelium growth and metabolism, offering empirical support for a cultivation strategy for liquid F. luteovirens, and an exploration of its metabolites for potential applications.
Collapse
Affiliation(s)
- Yanqing Ni
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.L.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qiuhong Liao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Siyuan Gou
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.L.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Tongjia Shi
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Wensheng Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.L.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rencai Feng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Zhiqiang Zhao
- Zhuoni County Agricultural Technology Extension Station, Gannan 747600, China
| | - Xu Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| |
Collapse
|
3
|
Cailleau G, Hanson BT, Cravero M, Zhioua S, Hilpish P, Ruiz C, Robinson AJ, Kelliher JM, Morales D, Gallegos-Graves LV, Bonito G, Chain PS, Bindschedler S, Junier P. Associated bacterial communities, confrontation studies, and comparative genomics reveal important interactions between Morchella with Pseudomonas spp. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1285531. [PMID: 38155707 PMCID: PMC10753826 DOI: 10.3389/ffunb.2023.1285531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/08/2023] [Indexed: 12/30/2023]
Abstract
Members of the fungal genus Morchella are widely known for their important ecological roles and significant economic value. In this study, we used amplicon and genome sequencing to characterize bacterial communities associated with sexual fruiting bodies from wild specimens, as well as vegetative mycelium and sclerotia obtained from Morchella isolates grown in vitro. These investigations included diverse representatives from both Elata and Esculenta Morchella clades. Unique bacterial community compositions were observed across the various structures examined, both within and across individual Morchella isolates or specimens. However, specific bacterial taxa were frequently detected in association with certain structures, providing support for an associated core bacterial community. Bacteria from the genus Pseudomonas and Ralstonia constituted the core bacterial associates of Morchella mycelia and sclerotia, while other genera (e.g., Pedobacter spp., Deviosa spp., and Bradyrhizobium spp.) constituted the core bacterial community of fruiting bodies. Furthermore, the importance of Pseudomonas as a key member of the bacteriome was supported by the isolation of several Pseudomonas strains from mycelia during in vitro cultivation. Four of the six mycelial-derived Pseudomonas isolates shared 16S rDNA sequence identity with amplicon sequences recovered directly from the examined fungal structures. Distinct interaction phenotypes (antagonistic or neutral) were observed in confrontation assays between these bacteria and various Morchella isolates. Genome sequences obtained from these Pseudomonas isolates revealed intriguing differences in gene content and annotated functions, specifically with respect to toxin-antitoxin systems, cell adhesion, chitinases, and insecticidal toxins. These genetic differences correlated with the interaction phenotypes. This study provides evidence that Pseudomonas spp. are frequently associated with Morchella and these associations may greatly impact fungal physiology.
Collapse
Affiliation(s)
- Guillaume Cailleau
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Buck T. Hanson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Melissa Cravero
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sami Zhioua
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Patrick Hilpish
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Celia Ruiz
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Aaron J. Robinson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Julia M. Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Demosthenes Morales
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, United States
| | | | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Patrick S.G. Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | | | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
4
|
Zhang C, Shi X, Zhang J, Zhang Y, Liu W, Wang W. Integration of Metabolomes and Transcriptomes Provides Insights into Morphogenesis and Maturation in Morchella sextelata. J Fungi (Basel) 2023; 9:1143. [PMID: 38132744 PMCID: PMC10744280 DOI: 10.3390/jof9121143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
True morels (Morchella, Pezizales) are a popular edible and medicinal fungus with great nutritional and economic value. The dynamics and regulatory mechanisms during the morphogenesis and maturation of morels are poorly understood. In this study, the metabolomes and transcriptomes of the mycelium (MY), primordium differentiation (PR), young fruiting body (YFB), and mature fruiting body (MFB) were comprehensively analyzed to reveal the mechanism of the morphogenesis and maturation of Morchella sextelata. A total of 748 differentially expressed metabolites (DEMs) and 5342 differentially expressed genes (DEGs) were detected, mainly enriched in the carbohydrate, amino acid, and lipid metabolism pathways, with the transition from the mycelium to the primordium being the most drastic stage at both the metabolic and transcriptional levels. The integrated metabolomics and transcriptomics highlighted significant correlations between the DEMs and DEGs, and specific amino acid and nucleotide metabolic pathways were significantly co-enriched, which may play key roles in morphological development and ascocarp maturation. A conceptual model of transcriptional and metabolic regulation was proposed during morphogenesis and maturation in M. sextelata for the first time, in which environmental factors activate the regulation of transcription factors, which then promote metabolic and transcriptional regulation from vegetative to reproductive growth. These results provide insights into the metabolic dynamics and transcriptional regulation during the morphogenesis and maturation of morels and valuable resources for future breeding enhancement and sustainable artificial cultivation.
Collapse
Affiliation(s)
- Chen Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (C.Z.); (J.Z.)
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Jiexiong Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (C.Z.); (J.Z.)
| | - Yesheng Zhang
- Shandong Junsheng Biotechnologies Co., Ltd., Liaocheng 252400, China;
| | - Wei Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (C.Z.); (J.Z.)
| |
Collapse
|