Yang Y, Xiong D, Zhao D, Huang H, Tian C. Genome sequencing of Elaeocarpus spp. stem blight pathogen Pseudocryphonectria elaeocarpicola reveals potential adaptations to colonize woody bark.
BMC Genomics 2024;
25:714. [PMID:
39048950 PMCID:
PMC11267912 DOI:
10.1186/s12864-024-10615-5]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND
Elaeocarpus spp. stem blight, caused by Pseudocryphonectria elaeocarpicola, is a destructive disease, which will significantly reduce the productivity and longevity of Elaeocarpus spp. plants, especially in the Guangdong Province of China. However, few information is available for P. elaeocarpicola. To unravel the potential adaptation mechanism of stem adaptation, the whole genome of P. elaeocarpicola was sequenced by using the DNBSEQ and PacBio platforms.
RESULTS
P. elaeocarpicola harbors 44.49 Mb genome with 10,894 predicted coding genes. Genome analysis revealed that the P. elaeocarpicola genome encodes a plethora of pathogenicity-related genes. Analysis of carbohydrate-active enzymes (CAZymes) revealed a rich variety of enzymes participated in plant cell wall degradation, which could effectively degrade cellulose, hemicellulose and xyloglucans in the plant cell wall and promote the invasion of the host plant. There are 213 CAZyme families found in P. elaeocarpicola, among which glycoside hydrolase (GH) family has the largest number, far exceeding other tested fungi by 53%. Besides, P. elaeocarpicola has twice as many genes encoding chitin and cellulose degradation as Cryphonectria parasitica, which belong to the same family. The predicted typical secreted proteins of P. elaeocarpicola are numerous and functional, including many known virulence effector factors, indicating that P. elaeocarpicola has great potential to secrete virulence effectors to promote pathogenicity on host plants. AntiSMASH revealed that the genome encoded 61 secondary metabolic gene clusters including 86 secondary metabolic core genes which was much higher than C. parasitica (49). Among them, two gene cluster of P. elaeocarpicola, cluster12 and cluster52 showed 100% similarity with the mycotoxins synthesis clusters from Aspergillus steynii and Alternaria alternata, respectively. In addition, we annotated cytochrome P450 related enzymes, transporters, and transcription factors in P. elaeocarpicola, which are important virulence determinants of pathogenic fungi.
CONCLUSIONS
Taken together, our study represents the first genome assembly for P. elaeocarpicola and reveals the key virulence factors in the pathogenic process of P. elaeocarpicola, which will promote our understanding of its pathogenic mechanism. The acquired knowledge lays a foundation for further exploration of molecular interactions with the host and provide target for management strategies in future research.
Collapse