1
|
Dong J, Liu Y, Liu F, Liu J, Chen X, Wu Y, Zhou L, Zhang Y. Determination of dextranase activity using 3-methyl-2-benzothiazolinone hydrazone method: Substrate refinement and fast-dissolution, method development and validation. Food Chem 2025; 463:141292. [PMID: 39305676 DOI: 10.1016/j.foodchem.2024.141292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 11/06/2024]
Abstract
A highly sensitive method has been developed for accurately measuring dextranase activity using 3-methyl-2-benzothiazolinone hydrazine. This method is based on the dextran refinement and fast-dissolving approach established in this study, as well as the assay method for enzymatic hydrolysates. The measurement parameters for the reducing sugar ends were optimized by examining the slope, intercept, R2, and time stability of the standard curve of glucose solutions containing dextran. Kinetic determination was utilized to optimize enzymatic parameters and validate the method, which was subsequently utilized for the analysis of toothpaste and mouthwash. The findings suggest that the enzymatic hydrolysis follows a zero-order reaction, laying a solid foundation for the end-point assay of dextranase activity. The results demonstrated a linear correlation within the measurement range (0.7-6.5 mU/mL), exhibiting good repeatability, high sensitivity and accuracy. This method outperformed the 3,5-dinitrosalicylic acid method and circumvented potential interference from other components in toothpaste and mouthwash.
Collapse
Affiliation(s)
- Jingwen Dong
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China
| | - Yinchun Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China
| | - Fang Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China
| | - Jianrui Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China
| | - Xiangyu Chen
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China
| | - Ya'nan Wu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China
| | - Lihua Zhou
- National Institute of measurement and testing technology, No.10 Yushuang Road, Chengdu 610021, China
| | - Yongqin Zhang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China..
| |
Collapse
|
2
|
Liu Y, Zhou Y, Bian C, Li H, Kang Y, Gao Y, Peng Y, Zhang C. Structural Characterization and Antioxidant Activity of Exopolysaccharide Produced from Beet Waste Residue by Leuconostoc pseudomesenteroides. Antioxidants (Basel) 2024; 13:1289. [PMID: 39594431 PMCID: PMC11591082 DOI: 10.3390/antiox13111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024] Open
Abstract
Lactic acid bacteria exopolysaccharide (EPS) is a large molecular polymer produced during the growth and metabolism of lactic acid bacteria. EPS has multiple biological functions and is widely used in fields such as food and medicine. However, the low yield and high production cost of EPS derived from lactic acid bacteria limit its widespread application. In this study, we used beet waste residue as a substrate to produce EPS by fermentation with Leuconostoc pseudomesenteroides to improve the utilization rate of agricultural waste and reduce the production cost of lactic acid bacterial EPS. After purification, the molecular weight (Mw) of EPS was determined to be 417 kDa using high-performance size exclusion chromatography (HPSEC). High-performance liquid chromatography (HPLC), Fourier transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy revealed that the EPS was composed of glucose subunits with α-1,6 glycosidic linkages. The thermal analysis and heavy metal adsorption capacity revealed a relatively high degradation temperature of 315.54 °C and that the material could effectively adsorb Cu2+. Additionally, the findings indicated that the EPS exhibited a significant ability to neutralize free radicals, a property that was found to be concentration dependent. Furthermore, the results of the intracellular study showed the protective effect of freshly isolated EPS on tBHP-induced cellular oxidative stress at a concentration of 50 µg/mL. These results suggest that the EPS from L. pseudomesenteroides may be developed as antioxidant agents for functional food products and pharmaceutical applications due to its capacity to scavenge free radicals.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biochemistry and Molecular Biology, Qiqihar Medical University, Qiqihar 161000, China; (Y.L.); (Y.Z.); (C.B.); (H.L.); (Y.K.); (Y.P.)
| | - Ying Zhou
- Department of Biochemistry and Molecular Biology, Qiqihar Medical University, Qiqihar 161000, China; (Y.L.); (Y.Z.); (C.B.); (H.L.); (Y.K.); (Y.P.)
| | - Cong Bian
- Department of Biochemistry and Molecular Biology, Qiqihar Medical University, Qiqihar 161000, China; (Y.L.); (Y.Z.); (C.B.); (H.L.); (Y.K.); (Y.P.)
| | - Heqi Li
- Department of Biochemistry and Molecular Biology, Qiqihar Medical University, Qiqihar 161000, China; (Y.L.); (Y.Z.); (C.B.); (H.L.); (Y.K.); (Y.P.)
| | - Youxian Kang
- Department of Biochemistry and Molecular Biology, Qiqihar Medical University, Qiqihar 161000, China; (Y.L.); (Y.Z.); (C.B.); (H.L.); (Y.K.); (Y.P.)
| | - Yu Gao
- Department of Clinical Trial, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China;
| | - Yao Peng
- Department of Biochemistry and Molecular Biology, Qiqihar Medical University, Qiqihar 161000, China; (Y.L.); (Y.Z.); (C.B.); (H.L.); (Y.K.); (Y.P.)
| | - Chunjing Zhang
- Department of Biochemistry and Molecular Biology, Qiqihar Medical University, Qiqihar 161000, China; (Y.L.); (Y.Z.); (C.B.); (H.L.); (Y.K.); (Y.P.)
| |
Collapse
|
3
|
Zarour K, Zeid AF, Mohedano ML, Prieto A, Kihal M, López P. Leuconostoc mesenteroides and Liquorilactobacillus mali strains, isolated from Algerian food products, are producers of the postbiotic compounds dextran, oligosaccharides and mannitol. World J Microbiol Biotechnol 2024; 40:114. [PMID: 38418710 PMCID: PMC10901973 DOI: 10.1007/s11274-024-03913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Six lactic acid bacteria (LAB) isolated from Algerian sheep's milk, traditional butter, date palm sap and barley, which produce dextran, mannitol, oligosaccharides and vitamin B2 have been characterized. They were identified as Leuconostoc mesenteroides (A4X, Z36P, B12 and O9) and Liquorilactobacillus mali (BR201 and FR123). Their exopolysaccharides synthesized from sucrose by dextransucrase (Dsr) were characterized as dextrans with (1,6)-D-glucopyranose units in the main backbone and branched at positions O-4, O-2 and/or O-3, with D-glucopyranose units in the side chain. A4X was the best dextran producer (4.5 g/L), while the other strains synthesized 2.1-2.7 g/L. Zymograms revealed that L. mali strains have a single Dsr with a molecular weight (Mw) of ~ 145 kDa, while the Lc. mesenteroides possess one or two enzymes with 170-211 kDa Mw. As far as we know, this is the first detection of L. mali Dsr. Analysis of metabolic fluxes from sucrose revealed that the six LAB produced mannitol (~ 12 g/L). The co-addition of maltose-sucrose resulted in the production of panose (up to 37.53 mM), an oligosaccharide known for its prebiotic effect. A4X, Z36P and B12 showed dextranase hydrolytic enzymatic activity and were able to produce another trisaccharide, maltotriose, which is the first instance of a dextranase activity encoded by Lc. mesenteroides strains. Furthermore, B12 and O9 grew in the absence of riboflavin (vitamin B2) and synthesized this vitamin, in a defined medium at the level of ~ 220 μg/L. Therefore, these LAB, especially Lc. mesenteroides B12, are good candidates for the development of new fermented food biofortified with functional compounds.
Collapse
Affiliation(s)
- Kenza Zarour
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 Ahmed Ben Bella, Es Senia, 31100, Oran, Algeria
| | - Ahmed Fouad Zeid
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 Ahmed Ben Bella, Es Senia, 31100, Oran, Algeria
| | - Mari Luz Mohedano
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain
| | - Alicia Prieto
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain
| | - Mebrouk Kihal
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 Ahmed Ben Bella, Es Senia, 31100, Oran, Algeria
| | - Paloma López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain.
| |
Collapse
|