1
|
Chen L, Qin X, Wang G, Teng M, Zheng Y, Yang F, Du H, Wang L, Xu Y. Oxygen influences spatial heterogeneity and microbial succession dynamics during Baijiu stacking process. BIORESOURCE TECHNOLOGY 2024; 403:130854. [PMID: 38761866 DOI: 10.1016/j.biortech.2024.130854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
The spontaneous solid-state stacking process (SSSP) of Baijiu is an environmentally friendly and cost-effective process for enriching and assembling environmental microorganisms to guarantee the subsequent fermentation efficiency. In this study, how SSSP create spatial heterogeneity of stacking piles were found through spatiotemporal sampling. The degree of difficulty in oxygen exchange categorizes the stacking pile into depleted (≤4%), transitional (4 %-17 %), and enriched (≥17 %) oxygen-defined layers. This results in variation in succession rates (Vdepleted > Vtransitional > Venriched), which accelerates spatial heterogeneity during SSSP. As a dominant species (65 %-99 %) in depleted and transitional layers, Acetilactobacillus jinshanensis can rapidly reduce oxygen disturbance by upregulating poxL and catE, that sustains spatial heterogeneity. The findings demonstrated the value of oxygen control in shaping spatial heterogeneity during SSSP processes, which can create specific functional microbiome. Adding spatial heterogeneity management will help achieve more precise control of such solid-state fermentation systems.
Collapse
Affiliation(s)
- Liangqiang Chen
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China; Moutai Institute, Renhuai 564500, Guizhou, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China
| | - Xing Qin
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China
| | - Guozheng Wang
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China
| | - Mengjing Teng
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China
| | - Yuxi Zheng
- Moutai Institute, Renhuai 564500, Guizhou, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China
| | - Fan Yang
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Li Wang
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China.
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
2
|
Wang C, Li C, Bin Z, Zhu G, Tang S, Zhang J, Chen Y, Xiao D, Guo X. Workshop environment heterogeneity shaped the microbiome and metabolome profiles during Xiasha round of Jiangxiangxing Baijiu. Food Chem X 2024; 22:101264. [PMID: 38468635 PMCID: PMC10926306 DOI: 10.1016/j.fochx.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Workshop with different fermentation years plays an essential role in the yield and quality of Baijiu. In actual production, the quality of base Baijiu in newly built workshop is inferior to the older one. In this study, the microbiota of workshop environment and fermentation process from two workshops namely N (ferment 2 years) and O (ferment 20 years) and flavor compounds were studied during Xiasha round. Results showed workshop O accumulated more environmental microorganisms and fungi including P. kudriavzevii, Wickerhamomyces anomalus and Saccharomyces sp mainly came from ground. Yeasts including Pichia, Cyberlindnera, Wickerhamomyces and Candida were responsible for flavor substances formation in O while Saccharopolyspora was in N. This study for the first time explored the reasons for the brewing differences among N and O workshop from perspectives of workshop environment, microbial community and flavor substances, providing new ideas for guiding production as well as improvement of Baijiu quality.
Collapse
Affiliation(s)
- Cailing Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenyao Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhiqiang Bin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guojun Zhu
- Guizhou Zhenjiu Brewing Co., Ltd, Zunyi, Guizhou, China
| | - Shaopei Tang
- Guizhou Zhenjiu Brewing Co., Ltd, Zunyi, Guizhou, China
| | - Jinyu Zhang
- Guizhou Zhenjiu Brewing Co., Ltd, Zunyi, Guizhou, China
| | - Yefu Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuewu Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
3
|
Xie P, Shao M, Deng X, Ren Y, Chen M, Jiang Y, Shen J. Bacterial composition and physicochemical characteristics of sorghum based on environmental factors in different regions of China. Front Microbiol 2024; 15:1422471. [PMID: 39006754 PMCID: PMC11240854 DOI: 10.3389/fmicb.2024.1422471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024] Open
Abstract
The fermentation process for Jiang-flavored baijiu using sorghum as the raw material involves a variety of microorganisms. However, the specific physicochemical characteristics of sorghum and microbial composition on its surface have not been fully elucidated. We aimed to perform a comprehensive comparative analysis of the variations in physicochemical properties and surface microflora in waxy sorghum samples from three prominent production regions in China (Renhuai, Jinsha, and Duyun). Multivariate statistical assessments were conducted that incorporated local soil and climate variables. The results showed that Cyanobacteria, unclassified bacteria, Proteobacteria, Firmicutes, and Bacteroidota were the dominant bacteria in these regions. These bacteria were associated with ethyl acetate, ethyl caprylate, ethyl lactate, and butyl groups, which synergistically produce flavorful compounds. The surface bacterial communities were affected by soil total phosphorus, altitude, diurnal temperature range, monthly mean temperature, precipitation, and effective accumulated temperature. The findings of this study provide a new perspective on microorganisms related to Jiang-flavored baijiu and can help establish a reference for the stability of liquor quality.
Collapse
Affiliation(s)
- Peiyun Xie
- Guizhou Light Industry Technical College, Guiyang, China
| | - Mingbo Shao
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Xiaofeng Deng
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yan Ren
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Manjing Chen
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yuwen Jiang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Jiaqi Shen
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| |
Collapse
|
4
|
Zhang P, Liu Y, Li H, Hui M, Pan C. Strategies and Challenges of Microbiota Regulation in Baijiu Brewing. Foods 2024; 13:1954. [PMID: 38928896 PMCID: PMC11202514 DOI: 10.3390/foods13121954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The traditional Chinese Baijiu brewing process utilizes natural inoculation and open fermentation. The microbial composition and abundance in the microecology of Baijiu brewing often exhibit unstable characteristics, which directly results in fluctuations in Baijiu quality. The microbiota plays a crucial role in determining the quality of Baijiu. Analyzing the driving effect of technology and raw materials on microorganisms. Elucidating the source of core microorganisms and interactions between microorganisms, and finally utilizing single or multiple microorganisms to regulate and intensify the Baijiu fermentation process is an important way to achieve high efficiency and stability in the production of Baijiu. This paper provides a systematic review of the composition and sources of microbiota at different brewing stages. It also analyzes the relationship between raw materials, brewing processes, and brewing microbiota, as well as the steps involved in the implementation of brewing microbiota regulation strategies. In addition, this paper considers the feasibility of using Baijiu flavor as a guide for Baijiu brewing regulation by synthesizing the microbiota, and the challenges involved. This paper is a guide for flavor regulation and quality assurance of Baijiu and also suggests new research directions for regulatory strategies for other fermented foods.
Collapse
Affiliation(s)
- Pengpeng Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (P.Z.); (H.L.); (M.H.)
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Yanbo Liu
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Haideng Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (P.Z.); (H.L.); (M.H.)
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Ming Hui
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (P.Z.); (H.L.); (M.H.)
| | - Chunmei Pan
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| |
Collapse
|
5
|
Li J, Ding Z, Dong W, Li W, Wu Y, Zhu L, Ma H, Sun B, Li X. Analysis of differences in microorganisms and aroma profiles between normal and off-flavor pit mud in Chinese strong-flavor Baijiu. J Biosci Bioeng 2024; 137:360-371. [PMID: 38369397 DOI: 10.1016/j.jbiosc.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 02/20/2024]
Abstract
The unique cellar fermentation process of Chinese strong-flavor Baijiu is the reason for its characteristic cellar aroma flavor. The types, abundance, community structure and metabolic activity of microorganisms in the pit mud directly affect the microbial balance in the white spirit production environment, promoting the formation of typical aromas and influencing the quality of CFSB. During the production process, the production of off-flavor in the cellar may occur. The aim of this study is to elucidate the differences in microbiota and flavor between normal pit mud and abnormal pit mud (pit mud with off-flavor). A total of 46 major volatile compounds were identified, and 24 bacterial genera and 21 fungal genera were screened. The esters, acids, and alcohols in the abnormal pit mud were lower than those in the normal pit mud, while the aldehydes were higher. 3-Methyl indole, which has been proven to be responsible for the muddy and musty flavors, was detected in both types of pit mud, and for the first time, high levels of 4-methylanisole was detected in the pit mud. The microbial composition of the two types of pit mud showed significant differences in the bacterial genera of Sporosarcina, Lactobacillus, Garciella, Anaerosalibacter, Lentimicrobium, HN-HF0106, Petrimonas, Clostridium_sensu_stricto_12 and Bacillus, and the fungal genera of Millerozyma, Penicillium, Mortierella, Monascus, Saccharomyces, Issatchenkia, Pithoascus, Pseudallescheria, and Wickerhamomyces. Additionally, we speculate that Sporosarcina is the predominant bacterial genus responsible for the imbalance of microbiota in pit mud.
Collapse
Affiliation(s)
- Jinyang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Ze Ding
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wenqi Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yanfang Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Lining Zhu
- Hebei Fenglaiyi Distillery Co., Ltd., Hebei 055550, China; Hebei Mud Cellar Brewing Technology Innovation Center, Ningjin County, Hebei 055550, China
| | - Huifeng Ma
- Hebei Fenglaiyi Distillery Co., Ltd., Hebei 055550, China; Hebei Mud Cellar Brewing Technology Innovation Center, Ningjin County, Hebei 055550, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
6
|
Zhang B, Lin L, Zheng C, Liu X, Cui W, Li X, Lyu X, Zhang C. Using in situ untargeted flavoromics analysis to unravel the empty cup aroma of Jiangxiang-type Baijiu: A novel strategy for geographical origin traceability. Food Chem 2024; 438:137932. [PMID: 37979271 DOI: 10.1016/j.foodchem.2023.137932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
"Empty cup aroma" is an important characteristic and quality evaluation standard of Jiangxiang-type Baijiu (JXB). In this study, an in situ detection method for the empty cup aroma of JXB was established, and the authenticity and origin information of JXB were identified with an untargeted flavoromics strategy. The complex composition of JXB leads to slow ethanol volatilization, which is a potential method for identifying artificial JXB. The results of the sensory analysis showed that acidic, sauce, burnt and qu in the empty cup of JXB were the strongest at the 45 min stage. A total of 155 compounds were detected in the empty cups of 15 JXB from different regions during 45 min of standing, and 34 compounds were identified as key aroma compounds in the empty cups of JXB. Eleven potential markers were screened (VIP > 1), which can be used to distinguish JXB produced in Guizhou/Sichuan and other regions.
Collapse
Affiliation(s)
- Busheng Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Liangcai Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Canjie Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xuan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Wanjing Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xin Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xiaotong Lyu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| |
Collapse
|
7
|
Wen L, Jiang J, Zheng J, Wang H, Huang M, Zong X, Li L. Preparation of layer-assembled W/O/W-type microencapsulated beads and application in solid-state fermentation. J Food Sci 2024; 89:2084-2095. [PMID: 38462848 DOI: 10.1111/1750-3841.17004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 03/12/2024]
Abstract
In this study, microcapsule beads-0-3-layers (M-0-3 indicates microencapsulated beads with 0, 1, 2, and 3 layers) were prepared, their properties were measured and characterized, and the effects of M-0-3 on solid-state fermentation were investigated. The results showed that in a liquid environment, the releasing glucoamylase activities of M-0-3 were 55.77%, 47.67%, 45.85%, and 42.87% in 360 h, respectively. In the solid environment, the reducing sugar production efficiency of M-0-3 was 29.84%, 27.72%, 19.16%, and 15.93% in 15 days, respectively. Adding M-0-3 improved the alcohol and reduced sugar content while decreasing the residual starch content of the Jiupei, indicating that adding M-0-3 was beneficial to the solid-state fermentation of Baijiu. Solid-state fermentation simulation experiments illustrated that microcapsule beads play a positive role in the production of Baijiu, enhancing raw material utilization and yield of Baijiu production.
Collapse
Affiliation(s)
- Lei Wen
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Yibin, Sichuan, China
| | - Jingrong Jiang
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Yibin, Sichuan, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd, Yibin, Sichuan, China
| | - Hong Wang
- Wuliangye Yibin Co., Ltd, Yibin, Sichuan, China
| | - Min Huang
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Yibin, Sichuan, China
| | - Xuyan Zong
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Yibin, Sichuan, China
| | - Li Li
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Yibin, Sichuan, China
| |
Collapse
|
8
|
Wu Y, Duan Z, Niu J, Zhu H, Zhang C, Li W, Li X, Sun B. Spatial heterogeneity of microbiota and flavor across different rounds of sauce-flavor baijiu in Northern China. Food Chem X 2023; 20:100970. [PMID: 38144740 PMCID: PMC10739760 DOI: 10.1016/j.fochx.2023.100970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 12/26/2023] Open
Abstract
Sauce-flavor baijiu (SFB) is a traditional Chinese distilled liquor crafted through a distinctive brewing process, involving seven rounds of stack fermentation (SF) and pit fermentation (PF). To date, there remains a knowledge gap regarding the microbial succession and flavor throughout all rounds of SFB with distinctive northern characteristics. Through LEfSe analysis, Saccharopolyspora, Virgibacillus, Thermoascus and Thermomyces, and Lactobacillus and Issatchenkia were found to be the most differentially representative genera in SF and PF, respectively. A total of 93 volatile flavor compounds were found in base baijius through the gas-chromatography mass spectrometry. Moreover, 29 volatile flavor substances with significant difference in base baijius of different rounds were revealed using the OPLS-DA model and VIP values and Spearman correlation analysis shows that bacteria have a greater impact on differential flavor compounds than fungi. This study provides a new perspective and insight into the brewing of northern SFB.
Collapse
Affiliation(s)
- Yanfang Wu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zhongfu Duan
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Jialiang Niu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Hua Zhu
- Beijing Huadu Distillery Food Co. Ltd, Beijing 102212, PR China
| | - Chengnan Zhang
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Weiwei Li
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
9
|
Tong W, Wang S, Yang Y, Huang Z, Li Y, Huang D, Luo H, Zhao L. Insights into the Dynamic Succession of Microbial Community and Related Factors of Vanillin Content Change Based by High-Throughput Sequencing and Daqu Quality Drivers. Foods 2023; 12:4312. [PMID: 38231778 DOI: 10.3390/foods12234312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Daqu is an important saccharifying starter in the fermentation of Nongxiangxing Baijiu in China. Vanillin is a health and flavor factor in Baijiu. However, only a few research studies on the vanillin content of Daqu are currently not systematic. In order to investigate the metabolic mechanism of vanillin in the fermentation process of Daqu, we analyzed the changes in microorganisms, influencing factors, and enzymes related to vanillin in Daqu. This research found that there were differences between bacterial and fungal genera in each sample, and the abundance of bacteria was greater than that of fungi. Among the microbial genera, Klebsiella, Escherichia, Acinetobacter, Saccharopolyspora, Aerococcus, and Puccinia were positively correlated with vanillin. Meanwhile, we also found that moisture and reducing sugar were the main physicochemical factors affecting the formation of vanillin. The functional annotation results indicate that carbohydrate metabolism and energy metabolism were important microbial metabolic pathways that impacted vanillin production in solid-state fermentation. The feruloyl-CoA hydratase/lyase (EC 4.1.2.61) and acylamidase (EC 3.5.1.4) were positively correlated with vanillin content (p ≤ 0.05) and promote the increase in vanillin content. These findings contribute to furthering our understanding of the functional microorganisms, physicochemical factors, and enzymes related to the change in vanillin content during the fermentation of Daqu and can help to further explore the flavor substances in Baijiu fermentation in the future.
Collapse
Affiliation(s)
- Wenhua Tong
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Key Laboratory of Brewing Biotechnology and Application, Yibin 644000, China
| | - Shuqin Wang
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Ying Yang
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Zhijiu Huang
- Sichuan Luzhou Laojiao Co., Ltd., Luzhou 646000, China
- Zuiqingfeng Distillery Co., Ltd., Luzhou 646000, China
| | - Yiyun Li
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Dan Huang
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Key Laboratory of Brewing Biotechnology and Application, Yibin 644000, China
| | - Huibo Luo
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Key Laboratory of Brewing Biotechnology and Application, Yibin 644000, China
| | - Liming Zhao
- School of Biotechnology, East China University of Science and Technology, Shanghai 200000, China
| |
Collapse
|