1
|
Vadillo-Rodríguez V, Fernández-Babiano I, Pérez-Giraldo C, Fernández-Calderón MC. Anti-Biofilm Perspectives of Propolis against Staphylococcus epidermidis Infections. Biomolecules 2024; 14:779. [PMID: 39062493 PMCID: PMC11274400 DOI: 10.3390/biom14070779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/08/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Staphylococcus epidermis has emerged as the main causative agent of medical device-related infections. Their major pathogenicity factor lies in its ability to adhere to surfaces and proliferate into biofilms, which increase their resistance to antibiotics. The main objective of this study was to evaluate the use and the mechanism of action of an ethanolic extract of Spanish propolis (EESP) as a potential alternative for preventing biofilm-related infections caused by S. epidermidis. The chemical composition of propolis is reported and its antibacterial activity against several strains of S. epidermidis with different biofilm-forming capacities evaluated. The influence of sub-inhibitory concentrations (sub-MICs) of EESP on their growth, physicochemical surface properties, adherence, and biofilm formation were studied. EESP interferes with planktonic cells, homogenizing their physicochemical surface properties and introducing a significant delay in their growth. The adherence and biofilms at the EESP concentrations investigated were decreased up to 90.5% among the strains. Microscopic analysis indicated that the planktonic cells that survived the treatment were the ones that adhere and proliferate on the surfaces. The results obtained suggest that the EESP has a high potential to be used as an inhibitor of both the adhesion and biofilm formation of S. epidermidis.
Collapse
Affiliation(s)
| | - Irene Fernández-Babiano
- Department of Biomedical Science, Area of Microbiology, University of Extremadura, 06006 Badajoz, Spain; (I.F.-B.); (C.P.-G.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
| | - Ciro Pérez-Giraldo
- Department of Biomedical Science, Area of Microbiology, University of Extremadura, 06006 Badajoz, Spain; (I.F.-B.); (C.P.-G.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
- Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain
| | - María Coronada Fernández-Calderón
- Department of Biomedical Science, Area of Microbiology, University of Extremadura, 06006 Badajoz, Spain; (I.F.-B.); (C.P.-G.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
- Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain
| |
Collapse
|
2
|
Gao J, Song W, Tang X, Liu Y, Miao M. Feruloyl Glyceride Mitigates Tomato Postharvest Rot by Inhibiting Penicillium expansum Spore Germination and Enhancing Suberin Accumulation. Foods 2024; 13:1147. [PMID: 38672820 PMCID: PMC11049243 DOI: 10.3390/foods13081147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Postharvest rot, caused by Penicillium expansum, in tomatoes poses significant economic and health risks. Traditional control methods, such as the use of fungicides, raise concerns about pathogen resistance, food safety, and environmental impact. In search of sustainable alternatives, plant secondary metabolites, particularly phenolic compounds and their derivatives, have emerged as promising natural antimicrobials. Among these, feruloyl glyceride (FG), a water-soluble derivative of ferulic acid, stands out due to its antioxidant properties, antibacterial properties, and improved solubility. In this study, we provide evidence demonstrating FG is capable of inhibiting the spore germination of P. expansum and effectively reducing the incidence rate of Penicillium rot of tomatoes, without compromising quality. Electron microscopy observations combined with metabolite and transcriptomic analyses revealed that FG treatments resulted in enhanced suberin accumulation through promoting the expression of suberin synthesis related genes and, consequently, inhibited the growth and expansion of P. expansum on the fruits. This work sheds light on the mechanisms underlying FG's inhibitory effects, allowing its potential application as a natural and safe alternative to replace chemical fungicides for postharvest preservation.
Collapse
Affiliation(s)
- Jieyu Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (J.G.); (W.S.); (X.T.)
| | - Wu Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (J.G.); (W.S.); (X.T.)
| | - Xiaofeng Tang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (J.G.); (W.S.); (X.T.)
| | - Yongsheng Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (J.G.); (W.S.); (X.T.)
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Min Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (J.G.); (W.S.); (X.T.)
| |
Collapse
|
3
|
Yang B, Li W, Mao Y, Zhao Y, Xue Y, Xu X, Zhao Y, Liu K. Study on antimicrobial activity of sturgeon skin mucus polypeptides (Rational Design, Self-Assembly and Application). Food Chem X 2024; 21:101236. [PMID: 38406763 PMCID: PMC10884804 DOI: 10.1016/j.fochx.2024.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
Despite the favorable biocompatibility of natural antimicrobial peptides (AMPs), their scarcity limits their practical application. Through rational design, the activity of AMPs can be enhanced to expand their application. In this study, we selected a natural sturgeon epidermal mucus peptide, AP-16 (APATPAAPALLPLWLL), as the model molecule and studied its conformational regulation and antimicrobial activity through amino acid substitutions and N-terminal lipidation. The structural and morphological transitions of the peptide self-assemblies were investigated using circular dichroism and transmission electron microscopy. Following amino acid substitution, the conformation of AL-16 (AKATKAAKALLKLWLL) did not change. Following N-terminal alkylation, the C8-AL-16 and C12-AL-16 conformations changed from random coil to β-sheet or α-helix, and the self-assembly changed from nanofibers to nanospheres. AL-16, C8-AL-16, and C8-AL-16 presented significant antimicrobial activity against Pseudomonas and Shewanella at low concentrations. N-terminal alkylation effectively extended the shelf life of Litopenaeus vannamei. These results support the application of natural AMPs.
Collapse
Affiliation(s)
- Beining Yang
- Sanya Oceanographic Institution /College of Food Science and Engineering, Ocean University of China, Sanya/Qingdao, China
- State Key Laboratory of Marine Food Processing & Safety Control, Ocean University of China, Qingdao, Shandong, China
| | - Wei Li
- China Department of General Surgery, The District Hospital of Qingdao West Coast New Area, Qngdao, Shandong, China
| | - Yuxuan Mao
- National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, China
| | - Yuanhui Zhao
- Sanya Oceanographic Institution /College of Food Science and Engineering, Ocean University of China, Sanya/Qingdao, China
- State Key Laboratory of Marine Food Processing & Safety Control, Ocean University of China, Qingdao, Shandong, China
| | - Yong Xue
- Sanya Oceanographic Institution /College of Food Science and Engineering, Ocean University of China, Sanya/Qingdao, China
- State Key Laboratory of Marine Food Processing & Safety Control, Ocean University of China, Qingdao, Shandong, China
| | - Xinxing Xu
- State Key Laboratory of Marine Food Processing & Safety Control, Ocean University of China, Qingdao, Shandong, China
| | - Yilin Zhao
- Sanya Oceanographic Institution /College of Food Science and Engineering, Ocean University of China, Sanya/Qingdao, China
- State Key Laboratory of Marine Food Processing & Safety Control, Ocean University of China, Qingdao, Shandong, China
| | - Kang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Xiamen, China
| |
Collapse
|
4
|
Yu Q, Sun L, Peng F, Sun C, Xiong F, Sun M, Liu J, Peng C, Zhou Q. Antimicrobial Activity of Stilbenes from Bletilla striata against Cutibacterium acnes and Its Effect on Cell Membrane. Microorganisms 2023; 11:2958. [PMID: 38138103 PMCID: PMC10746055 DOI: 10.3390/microorganisms11122958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The abnormal proliferation of Cutibacterium acnes is the main cause of acne vulgaris. Natural antibacterial plant extracts have gained great interest due to the efficacy and safety of their use in skin care products. Bletilla striata is a common externally used traditional Chinese medicine, and several of its isolated stilbenes were reported to exhibit good antibacterial activity. In this study, the antimicrobial activity of stilbenes from B. striata (BSS) against C. acnes and its potential effect on cell membrane were elucidated by determining the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), bacterial growth curve, adenosine triphosphate (ATP) levels, membrane potential (MP), and the expression of genes related to fatty acid biosynthesis in the cell membrane. In addition, the morphological changes in C. acnes by BSS were observed using transmission electron microscopy (TEM). Experimentally, we verified that BSS possessed significant antibacterial activity against C. acnes, with an MIC and MBC of 15.62 μg/mL and 62.5 μg/mL, respectively. The growth curve indicated that BSS at 2 MIC, MIC, 1/2 MIC, and 1/4 MIC concentrations inhibited the growth of C. acnes. TEM images demonstrated that BSS at an MIC concentration disrupted the morphological structure and cell membrane in C. acnes. Furthermore, the BSS at the 2 MIC, MIC, and 1/2 MIC concentrations caused a decrease in the intracellular ATP levels and the depolarization of the cell membrane as well as BSS at an MIC concentration inhibited the expression of fatty acid biosynthesis-associated genes. In conclusion, BSS could exert good antimicrobial activity by interfering with cell membrane in C. acnes, which have the potential to be developed as a natural antiacne additive.
Collapse
Affiliation(s)
- Qian Yu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luyao Sun
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chen Sun
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Xiong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meiji Sun
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Juan Liu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qinmei Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|