1
|
An M, Liang R, Chen Y, Zhang J, Wang X, Li X, Qu G, Liang J. Chromosome-Level Genome Assembly and Annotation of the Highly Heterozygous Phallus echinovolvatus Provide New Insights into Its Genetics. J Fungi (Basel) 2025; 11:62. [PMID: 39852481 PMCID: PMC11766896 DOI: 10.3390/jof11010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Phallus echinovolvatus is a well-known edible and medicinal fungus with significant economic value. However, the available whole-genome information is lacking for this species. The chromosome-scale reference genome (Monop) and two haploid genomes (Hap1 and Hap2) of P. echinovolvatus, each assembled into 11 pseudochromosomes, were constructed using Illumina, PacBio-HiFi long-read sequencing, and Hi-C technology. The Monop had a size of 36.54 Mb, with 10,251 predicted protein-coding genes and including 433 carbohydrate-active enzyme genes, 385 cytochrome P450 enzyme genes, and 42 gene clusters related to secondary metabolite synthesis. Phylogenetic and collinearity analysis revealed a close evolutionary relationship between P. echinovolvatus and Clathrus columnatus in the core Phallales clade. Hap1 and Hap2 had sizes of 35.46 Mb and 36.11 Mb, respectively. Collinear relationships were not observed for 15.38% of the genes in the two haplotypes. Hap1 had 256 unique genes, and Hap2 had 370 unique genes. Our analysis of the P. echinovolvatus genome provides insights into the genetic basis of the mechanisms underlying the metabolic effects of bioactive substances and will aid ongoing breeding efforts and studies of genetic mechanisms.
Collapse
Affiliation(s)
- Mengya An
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (M.A.); (Y.C.); (J.Z.); (X.W.); (X.L.); (G.Q.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ruoxi Liang
- Honors College, Northwestern Polytechnical University, Xi’an 710129, China;
| | - Yanliu Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (M.A.); (Y.C.); (J.Z.); (X.W.); (X.L.); (G.Q.)
| | - Jinhua Zhang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (M.A.); (Y.C.); (J.Z.); (X.W.); (X.L.); (G.Q.)
| | - Xiuqing Wang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (M.A.); (Y.C.); (J.Z.); (X.W.); (X.L.); (G.Q.)
| | - Xing Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (M.A.); (Y.C.); (J.Z.); (X.W.); (X.L.); (G.Q.)
| | - Guohua Qu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (M.A.); (Y.C.); (J.Z.); (X.W.); (X.L.); (G.Q.)
| | - Junfeng Liang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (M.A.); (Y.C.); (J.Z.); (X.W.); (X.L.); (G.Q.)
| |
Collapse
|
2
|
Wu X, Du Z, Liu L, Chen Z, Li Y, Fu S. Integrative Analysis of Transcriptome and Metabolome Sheds Light on Flavonoid Biosynthesis in the Fruiting Body of Stropharia rugosoannulata. J Fungi (Basel) 2024; 10:254. [PMID: 38667925 PMCID: PMC11051051 DOI: 10.3390/jof10040254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Flavonoids are a diverse family of natural compounds that are widely distributed in plants and play a critical role in plant growth, development, and stress adaptation. In recent years, the biosynthesis of flavonoids in plants has been well-researched, with the successive discovery of key genes driving this process. However, the regulation of flavonoid biosynthesis in fungi remains unclear. Stropharia rugosoannulata is an edible mushroom known for its high nutritional and pharmacological value, with flavonoids being one of its main active components. To investigate the flavonoid content of S. rugosoannulata, a study was conducted to extract and determine the total flavonoids at four stages: young mushroom (Ym), gill (Gi), maturation (Ma), and parachute-opening (Po). The findings revealed a gradual increase in total flavonoid concentration as the fruiting body developed, with significant variations observed between the Ym, Gi, and Ma stages. Subsequently, we used UPLC-MS/MS and transcriptome sequencing (RNA-seq) to quantify the flavonoids and identify regulatory genes of Ym, Gi, and Ma. In total, 53 flavonoid-related metabolites and 6726 differentially expressed genes (DEGs) were identified. Through KEGG pathway enrichment analysis, we identified 59 structural genes encoding flavonoid biosynthesis-related enzymes, most of which were up-regulated during the development of the fruiting body, consistent with the accumulation of flavonoids. This research led to the establishment of a comprehensive transcriptional metabolic regulatory network encompassing flavonoids, flavonoid synthases, and transcription factors (TFs). This represents the first systematic exploration of the molecular mechanism of flavonoids in the fruiting of fungi, offering a foundation for further research on flavonoid mechanisms and the breeding of high-quality S. rugosoannulata.
Collapse
Affiliation(s)
- Xian Wu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China;
| | - Zhihui Du
- Guizhou Horticulture Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China; (Z.D.); (L.L.); (Z.C.)
| | - Lian Liu
- Guizhou Horticulture Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China; (Z.D.); (L.L.); (Z.C.)
| | - Zhilin Chen
- Guizhou Horticulture Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China; (Z.D.); (L.L.); (Z.C.)
| | - Yurong Li
- Guizhou Horticulture Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China; (Z.D.); (L.L.); (Z.C.)
| | - Shaobin Fu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China;
| |
Collapse
|
3
|
Duan M, Li X, Wu X, Long S, Huang H, Li Y, Liu QH, Zhu G, Feng B, Qin S, Li C, Yang H, Qin J, Chen Z, Wang Z. Dictyophora indusiata and Bacillus aryabhattai improve sugarcane yield by endogenously associating with the root and regulating flavonoid metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1326917. [PMID: 38516657 PMCID: PMC10955060 DOI: 10.3389/fpls.2024.1326917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
Introduction Endophytes play a significant role in regulating plant root development and facilitating nutrient solubilization and transportation. This association could improve plant growth. The present study has uncovered a distinct phenotype, which we refer to as "white root", arising from the intricate interactions between endophytic fungi and bacteria with the roots in a sugarcane and bamboo fungus (Dictyophora indusiata) intercropping system. Methods We investigated the mechanisms underlying the formation of this "white root" phenotype and its impact on sugarcane yield and metabolism by metabarcoding and metabolome analysis. Results and Discussion Initial analysis revealed that intercropping with D. indusiata increased sugarcane yield by enhancing the number of viable tillers compared with bagasse and no input control. Metabarcoding based on second-generation and third-generation sequencing indicated that D. indusiate and Bacillus aryabhattai dominates the fungal and bacterial composition in the "white root" phenotype of sugarcane root. The coexistence of D. indusiata and B. aryabhattai as endophytes induced plant growth-promoting metabolites in the sugarcane root system, such as lysoPC 18:1 and dihydrobenzofuran, probably contributing to increased sugarcane yield. Furthermore, the association also enhanced the metabolism of compounds, such as naringenin-7-O-glucoside (Prunin), naringenin-7-O-neohesperidoside (Naringin)*, hesperetin-7-O-neohesperidoside (Neohesperidin), epicatechin, and aromadendrin (Dihydrokaempferol), involved in flavonoid metabolism during the formation of the endophytic phenotype in the sugarcane root system. These observations suggest that the "white root" phenotype promotes sugarcane growth by activating flavonoid metabolism. This study reports an interesting phenomenon where D. indusiata, coordinate with the specific bacteria invade, forms a "white root" phenotype with sugarcane root. The study also provides new insights into using D. indusiata as a soil inoculant for promoting sugarcane growth and proposes a new approach for improve sugarcane cultivation.
Collapse
Affiliation(s)
- Mingzheng Duan
- Guangxi Academy of Agricultural Sciences, Nanning, China
- Yunnan Key Laboratory of Gastrodia Elata and Fungal Symbiotic Biology, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Xiang Li
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiaojian Wu
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shengfeng Long
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hairong Huang
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yijie Li
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Qi-Huai Liu
- Laibin Academy of Agricultural Sciences, Laibin, China
| | - Guanghu Zhu
- Laibin Academy of Agricultural Sciences, Laibin, China
| | - Bin Feng
- Laibin Academy of Agricultural Sciences, Laibin, China
| | - Sunqian Qin
- Laibin Academy of Agricultural Sciences, Laibin, China
| | - Changning Li
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hai Yang
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jie Qin
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhendong Chen
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zeping Wang
- Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
4
|
Duan M, Li Y, Zhu G, Wu X, Huang H, Qin J, Long S, Li X, Feng B, Qin S, Liu QH, Li C, Wang L, Li Q, He T, Wang Z. Soil chemistry, metabarcoding, and metabolome analyses reveal that a sugarcane- Dictyophora indusiata intercropping system can enhance soil health by reducing soil nitrogen loss. Front Microbiol 2023; 14:1193990. [PMID: 37303785 PMCID: PMC10249477 DOI: 10.3389/fmicb.2023.1193990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Greater amounts of fertilizer are applied every year to meet the growing demand for food. Sugarcane is one of the important food sources for human beings. Methods Here, we evaluated the effects of a sugarcane-Dictyophora indusiata (DI) intercropping system on soil health by conducting an experiment with three different treatments: (1) bagasse application (BAS process), (2) bagasse + DI (DIS process), and (3) the control (CK). We then analyzed soil chemistry, the diversity of soil bacteria and fungi, and the composition of metabolites to clarify the mechanism underlying the effects of this intercropping system on soil properties. Results and discussion Soil chemistry analyses revealed that the content of several soil nutrients such as nitrogen (N) and phosphorus (P) was higher in the BAS process than in the CK. In the DIS process, a large amount of soil P was consumed by DI. At the same time, the urease activity was inhibited, thus slowing down the loss of soil in the DI process, while the activity of other enzymes such as β-glucosidase and laccase was increased. It was also noticed that the content of lanthanum and calcium was higher in the BAS process than in the other treatments, and DI did not significantly alter the concentrations of these soil metal ions. Bacterial diversity was higher in the BAS process than in the other treatments, and fungal diversity was lower in the DIS process than in the other treatments. The soil metabolome analysis revealed that the abundance of carbohydrate metabolites was significantly lower in the BAS process than in the CK and the DIS process. The abundance of D(+)-talose was correlated with the content of soil nutrients. Path analysis revealed that the content of soil nutrients in the DIS process was mainly affected by fungi, bacteria, the soil metabolome, and soil enzyme activity. Our findings indicate that the sugarcane-DIS intercropping system can enhance soil health.
Collapse
Affiliation(s)
- Mingzheng Duan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Yijie Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Guanghu Zhu
- Center for Applied Mathematics of Guangxi (GUET), Guilin, China
| | - Xiaojian Wu
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hairong Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Jie Qin
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Shengfeng Long
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiang Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Bin Feng
- Laibin Academy of Agricultural Sciences, Laibin, China
| | - Sunqian Qin
- Laibin Academy of Agricultural Sciences, Laibin, China
| | - Qi-Huai Liu
- Center for Applied Mathematics of Guangxi (GUET), Guilin, China
| | - Changning Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Lingqiang Wang
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Qing Li
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Tieguang He
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zeping Wang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| |
Collapse
|