1
|
Tleuova KZ, Shingisov AU, Khamitova BM, Kanseitova ET, Tulekbaeva AK. Isolation and molecular characterization of Lactobacillus delbrueckii subsp based on bulgaricus strain 1 from kefir shows probiotic and antimicrobial properties: Linking probiotics to UNSDG (United Nations Sustainable Development Goals) agenda: 2030. BRAZ J BIOL 2025; 84:e286969. [PMID: 39936794 DOI: 10.1590/1519-6984.286969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/23/2024] [Indexed: 02/13/2025] Open
Abstract
The global population increase necessitates the dire need for ample food as medicine. Good health and well-being are stressed on probiotic functional foods. The present study characterizes biochemical and molecular identification of potential lactic acid bacteria. The potent antimicrobial properties also affirm Lactobacillus delbrueckii subsp. bulgaricus strain 3286. Biochemical analysis comprises carbohydrate fermentation, tolerance to acids and bile salts, production of bioactive compounds, lecithinase production, gelatinase production, and strain ripening ability. Antibiotic sensitivity to various antibiotics was assessed employing minimum inhibitory concentration (MIC) and E-test. Strain resistance to increased salt concentrations coherently concludes the positive impact of gut microbiome and gut-brain axis health management. The preliminary assessment requires further in vitro, in vivo, and in silico analysis for commercialization, market strategy and utility as functional food supplementation. The study can be rationalized for sustainable development goals regarding SDG 3: good health and well-being. Further, the UNSDG agenda 2030 also ascertains the role of probiotic foods in life longevity and public health management systems.
Collapse
Affiliation(s)
- K Z Tleuova
- South Kazakhstan University named after. M. Auezov, Department of Biotechnology, Shymkent, Republic of Kazakhstan
| | - A U Shingisov
- South Kazakhstan University named after. M. Auezov, Department of Technology and Safety of Food Products, Academy of Natural Sciences of the Russian Federation, Shymkent, Kazakhstan
| | - B M Khamitova
- M. Auezov South Kazakhstan State University, Shymkent, Kazakhstan
| | - E T Kanseitova
- Agrotechnical University named after S. Seifullina, Southwestern Scientific Research Institute of Animal Husbandry and Crop Production, Southwestern Scientific Research Institute of Animal Husbandry and Crop Production, RSE "Southwestern Scientific and Production Center of Agriculture" - RSE "YZNPTSKH", Astana, Kazakhstan
- M. Auezov South Kazakhstan State University, South Kazakhstan University named after M. Auezov, Shymkent, Kazakhstan
| | - A K Tulekbaeva
- SKSU named after. M. Auezova, Department of "Standardization and Certification", Shymkent, Kazakhstan
| |
Collapse
|
2
|
Kyei-Baffour VO, Vijaya AK, Burokas A, Daliri EBM. Psychobiotics and the gut-brain axis: advances in metabolite quantification and their implications for mental health. Crit Rev Food Sci Nutr 2025:1-20. [PMID: 39907087 DOI: 10.1080/10408398.2025.2459341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Psychobiotics are live microorganisms that, when administered in adequate amounts, confer mental health benefits to the host. Several clinical studies have demonstrated significant mental health benefits from psychobiotic administration, making them an emerging topic in food science. Certain strains of Lactobacillus, Bifidobacterium, Streptococcus, Escherichia, and Enterococcus species are known for their ability to modulate the gut-brain axis and provide mental health benefits. Proposed action mechanisms include the production of neuroactive compounds or their precursors, which may cross the blood-brain barrier, or transported by their extracellular vesicles. However, there is a lack of in vivo evidence directly confirming these mechanisms, although indirect evidence from recent studies suggest potential pathways for further investigation. To advance our understanding, it is crucial to study these mechanisms within the host, with accurate quantification of neuroactive compounds and/or their precursors being key in such studies. Current quantification methods, however, face challenges, such as low sensitivity for detecting trace metabolites and limited specificity due to interference from other compounds, impacting the reliability of measurements. This review discusses the emerging field of psychobiotics, their potential action mechanisms, neuroactive compound estimation techniques, and perspectives for improvement in quantifying neuroactive compounds and/or precursors within the host.
Collapse
Affiliation(s)
- Vincent Owusu Kyei-Baffour
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Akshay Kumar Vijaya
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Eric Banan-Mwine Daliri
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
3
|
Chauhan N, Kumar S, Chauhan T, Samanta AK. Screening of lactic acid bacteria from the milk of Sahiwal cows and characterization of their probiotic potential for preventing bovine mastitis. Int Microbiol 2024:10.1007/s10123-024-00623-6. [PMID: 39661222 DOI: 10.1007/s10123-024-00623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
Antibiotic therapy has been the most popular line of treatment for the control of mastitis worldwide during the last few decades. Alternative and sustainable treatments must be developed because pathogens are becoming more resistant to antibiotics, leading to the development and spread of antimicrobial resistance (AMR). The aim of the current investigation was to isolate lactic acid bacteria (LAB) with probiotic potential that can inhibit mastitis-causing pathogens to prevent bovine mastitis. Milk samples were collected from Sahiwal cows, and a total of 150 bacteria were isolated, of which 76 were found to be catalase negative, and resistant to vancomycin. Twenty-three isolates displayed greater acid and bile tolerance, with > 90% survivability, and were molecularly characterized by 16S rRNA partial sequencing. The autoaggregation percentages for SML7 and SML41 were greater (p<0·05) 80.38±0.19% and 80.28±0.04%, respectively. SML10 (92.04±0.26 μmol/mL) had the highest (p<0.05) ferric-reducing antioxidant power (FRAP) activity, while SML20 (52.1±0.99%) had the highest 1,1 diphenyl 2 picrylhydrazyl (DPPH) scavenging activity. All the strains were nonhemolytic or nonmucinolytic. The highest antimicrobial activity was observed in several strains (SML41, SML63, SML76, and SML60) against common mastitis-causing pathogens, namely, E. coli ATCC25922, Staphylococcus aureus ATCC25923, Enterococcus faecalis NCDC114, Streptococcus agalactiae NCDC208, and Enterococcus faecium NCDC124. The coaggregation efficacy of SML20 with S. aureus was the highest (67.69±1.21%), while SML41 showed the highest (69.75±0.29%) coaggregation efficacy with E. faecalis NCDC114 and SML63 (68.078±0.26) with S. agalactiae NCDC208. Overall, seven distinct lactic acid bacterial clusters were identified by cluster analysis of the phylogenetic tree as follows: Enterococcus hirae (1), Limosilactobacillus reuteri (1), Pediococcus acidilactici (4), Weissella confusa (11), Lactobacillus helveticus (3), Limosilactobacillus balticus (2), and Lacticaseibacillus rhamnosus (1). The Lactobacillus helveticus SML41, Lactobacillus helveticus SML60, Weissella confusa SML61, Lacticaseibacillus rhamnosus SML63, Weissella confusa SML64, and Pediococcus acidilactici SML76 isolates were found to possess the most desirable characteristics of potential probiotics based on principal component analysis (PCA). Therefore, the strains chosen in the current investigation demonstrated techno-functional characteristics that rendered them appropriate for probiotic use to treat and prevent intramammary infections in dairy cattle in a sustainable manner.
Collapse
Affiliation(s)
- Nutan Chauhan
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sachin Kumar
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Tejshi Chauhan
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Ashis Kumar Samanta
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
4
|
Megur A, Lastauskienė E, Burokas A. Draft genome sequence data of Lactiplantibacillus plantarum 33C isolated from Lithuanian fermented food. Data Brief 2024; 55:110750. [PMID: 39100785 PMCID: PMC11295458 DOI: 10.1016/j.dib.2024.110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
This strain was isolated from traditionally (homemade) fermented Lithuanian cherry tomatoes. The genome consists of 55 contigs with a total size of 3,326,119 bp, an N50 of 170738, and a GC% of 44.3 %. According to the COG annotation, most of these proteins were divided into three categories related to transcription (K category: 307), amino acid transport and metabolism (E category: 222), and carbohydrate transport and metabolism (G category: 268). No genes associated with antimicrobial resistance or virulence factors were identified. The data presented here can be used in comparative genomics to identify antimicrobial resistance genes and virulence factors that may be present in relevant Lactobacillus species. PlasmidFinder server revealed the presence of plasmid pR18 (assessment number JN601038) in the genome that has lincomycin resistance, can be transferred from one bacterium to another, and is one of the most common plasmids in the genera Bacillus and Lactobacillus. The draft genome sequence data have been deposited with NCBI under Bioproject under accession number PRJNA947394.
Collapse
Affiliation(s)
- Ashwinipriyadarshini Megur
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT, Vilnius 10257, Lithuania
| | - Eglė Lastauskienė
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT, Vilnius 10257, Lithuania
| | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT, Vilnius 10257, Lithuania
| |
Collapse
|
5
|
Wu R, Ji P, Hua Y, Li H, Zhang W, Wei Y. Research progress in isolation and identification of rumen probiotics. Front Cell Infect Microbiol 2024; 14:1411482. [PMID: 38836057 PMCID: PMC11148321 DOI: 10.3389/fcimb.2024.1411482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
With the increasing research on the exploitation of rumen microbial resources, rumen probiotics have attracted much attention for their positive contributions in promoting nutrient digestion, inhibiting pathogenic bacteria, and improving production performance. In the past two decades, macrogenomics has provided a rich source of new-generation probiotic candidates, but most of these "dark substances" have not been successfully cultured due to the restrictive growth conditions. However, fueled by high-throughput culture and sorting technologies, it is expected that the potential probiotics in the rumen can be exploited on a large scale, and their potential applications in medicine and agriculture can be explored. In this paper, we review and summarize the classical techniques for isolation and identification of rumen probiotics, introduce the development of droplet-based high-throughput cell culture and single-cell sequencing for microbial culture and identification, and finally introduce promising cultureomics techniques. The aim is to provide technical references for the development of related technologies and microbiological research to promote the further development of the field of rumen microbiology research.
Collapse
Affiliation(s)
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | | | | | | | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Russo P, Diez-Ozaeta I, Mangieri N, Tamame M, Spano G, Dueñas MT, López P, Mohedano ML. Biotechnological Potential and Safety Evaluation of Dextran- and Riboflavin-Producing Weisella cibaria Strains for Gluten-Free Baking. Foods 2023; 13:69. [PMID: 38201097 PMCID: PMC10778100 DOI: 10.3390/foods13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Gluten consumption causes several immunological and non-immunological intolerances in susceptible individuals. In this study, the dextran-producing Weissella cibaria BAL3C-5 and its derivative, the riboflavin-overproducing strain BAL3C-5 C120T, together with a commercial bakery yeast, were used to ferment gluten-free (GF)-doughs obtained from corn and rice flours at two different concentrations and supplemented with either quinoa, buckwheat, or chickpea to obtain laboratory-scale GF bread. The levels of dextran, riboflavin, and total flavins were determined in the fermented and breads. Both strains grew in fermented doughs and contributed dextran, especially to those made with corn plus quinoa (~1 g/100 g). The highest riboflavin (350-150 µg/100 g) and total flavin (2.3-1.75 mg/100 g) levels were observed with BAL3C-5 C120T, though some differences were detected between the various doughs or breads, suggesting an impact of the type of flour used. The safety assessment confirmed the lack of pathogenic factors in the bacterial strains, such as hemolysin and gelatinase activity, as well as the genetic determinants for biogenic amine production. Some intrinsic resistance to antibiotics, including vancomycin and kanamycin, was found. These results indicated the microbiological safety of both W. cibaria strains and indicated their potential application in baking to produce GF bread.
Collapse
Affiliation(s)
- Pasquale Russo
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy; (P.R.); (N.M.)
| | - Iñaki Diez-Ozaeta
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (I.D.-O.); (P.L.)
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 San Sebastián, Spain;
| | - Nicola Mangieri
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy; (P.R.); (N.M.)
| | - Mercedes Tamame
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Giuseppe Spano
- DAFNE Department, University of Foggia, 71122 Foggia, Italy;
| | - Maria Teresa Dueñas
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 San Sebastián, Spain;
| | - Paloma López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (I.D.-O.); (P.L.)
| | - Mari Luz Mohedano
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (I.D.-O.); (P.L.)
| |
Collapse
|