1
|
Macedo MA, Melgarejo T, Cespedes M, Rojas M, Lazicki P, Turini T, Batuman O, Gilbertson R. An all-out assault on a dominant resistance gene: Local emergence, establishment, and spread of strains of tomato spotted wilt orthotospovirus (TSWV) that overcome Sw-5b-mediated resistance in fresh market and processing tomatoes in California. PLoS One 2024; 19:e0305402. [PMID: 38985801 PMCID: PMC11236122 DOI: 10.1371/journal.pone.0305402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/29/2024] [Indexed: 07/12/2024] Open
Abstract
Tomato spotted wilt orthotospovirus (TSWV) causes substantial economic loss to tomato production, and the Sw-5b resistance gene is widely deployed for management. Here, we show (i) the emergence of resistance-breaking (RB) TSWV strains in processing and fresh market tomato production in California over the past ten years, and (ii) evolutionary relationships with RB strains from other areas. A specific RT-PCR test was used to show the C118Y RB strain that emerged in Fresno County in 2016 quickly became predominant in the central production area and remained so through this study. In 2021, the C118Y strain was detected in the Northern production area, and was predominant in 2022. However, in 2023, the C118Y strain was unexpectedly detected in fewer spotted wilt samples from resistant varieties. This was due to emergence of the T120N RB strain, previously known to occur in Spain. A specific RT-PCR test was developed and used to show that the T120N RB strain was predominant in Colusa and Sutter counties (detected in 75-80% of samples), and detected in ~50% of samples from Yolo County. Pathogenicity tests confirmed California isolates of the T120N strain infected Sw-5b tomato varieties and induced severe symptoms. Another RB strain, C118F, was associated with spotted wilt samples of Sw-5 varieties from fresh market tomato production in southern California. Phylogenetic analyses with complete NSm sequences revealed that the C118Y and T120N RB strains infecting resistant processing tomato in California emerged locally, whereas those from fresh market production were more closely related to isolates from Mexico. Thus, widespread deployment of this single dominant resistance gene in California has driven the local emergence of multiple RB strains in different tomato production areas and types. These results further emphasize the need for ongoing monitoring for RB strains, and identification of sources of resistance to these strains.
Collapse
Affiliation(s)
- Mônica A. Macedo
- Federal Institution of Brasília, Brasília, Federal District, Brazil
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Tomas Melgarejo
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Margaret Cespedes
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Maria Rojas
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Patrícia Lazicki
- University of California Cooperative Extension, Woodland, California, United States of America
| | - Thomas Turini
- University of California Agriculture and Natural Resources, Fresno, California, United States of America
| | - Ozgur Batuman
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, Florida, United States of America
| | - Robert Gilbertson
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
2
|
Carpenter M, Kopanke J, Lee J, Rodgers C, Reed K, Sherman TJ, Graham B, Cohnstaedt LW, Wilson WC, Stenglein M, Mayo C. Evaluating Temperature Effects on Bluetongue Virus Serotype 10 and 17 Coinfection in Culicoides sonorensis. Int J Mol Sci 2024; 25:3063. [PMID: 38474308 PMCID: PMC10932384 DOI: 10.3390/ijms25053063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Bluetongue virus (BTV) is a segmented, double-stranded RNA virus transmitted by Culicoides midges that infects ruminants. As global temperatures increase and geographical ranges of midges expand, there is increased potential for BTV outbreaks from incursions of novel serotypes into endemic regions. However, an understanding of the effect of temperature on reassortment is lacking. The objectives of this study were to compare how temperature affected Culicoides survival, virogenesis, and reassortment in Culicoides sonorensis coinfected with two BTV serotypes. Midges were fed blood meals containing BTV-10, BTV-17, or BTV serotype 10 and 17 and maintained at 20 °C, 25 °C, or 30 °C. Midge survival was assessed, and pools of midges were collected every other day to evaluate virogenesis of BTV via qRT-PCR. Additional pools of coinfected midges were collected for BTV plaque isolation. The genotypes of plaques were determined using next-generation sequencing. Warmer temperatures impacted traits related to vector competence in offsetting ways: BTV replicated faster in midges at warmer temperatures, but midges did not survive as long. Overall, plaques with BTV-17 genotype dominated, but BTV-10 was detected in some plaques, suggesting parental strain fitness may play a role in reassortment outcomes. Temperature adds an important dimension to host-pathogen interactions with implications for transmission and evolution.
Collapse
Affiliation(s)
- Molly Carpenter
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Jennifer Kopanke
- Department of Comparative Medicine, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Justin Lee
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Case Rodgers
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Kirsten Reed
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Tyler J. Sherman
- Diagnostic Medicine Center, Colorado State University, 2450 Gillette Drive, Fort Collins, CO 80526, USA;
| | - Barbara Graham
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Lee W. Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit, The National Bio and Agro-Defense Facility, USDA Agricultural Research Service, P.O. Box 1807, Manhattan, KS 66505, USA; (L.W.C.); (W.C.W.)
| | - William C. Wilson
- Foreign Arthropod-Borne Animal Diseases Research Unit, The National Bio and Agro-Defense Facility, USDA Agricultural Research Service, P.O. Box 1807, Manhattan, KS 66505, USA; (L.W.C.); (W.C.W.)
| | - Mark Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Christie Mayo
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| |
Collapse
|
3
|
Juárez ID, Steczkowski MX, Chinnaiah S, Rodriguez A, Gadhave KR, Kurouski D. Using Raman spectroscopy for early detection of resistance-breaking strains of tomato spotted wilt orthotospovirus in tomatoes. FRONTIERS IN PLANT SCIENCE 2024; 14:1283399. [PMID: 38235194 PMCID: PMC10791937 DOI: 10.3389/fpls.2023.1283399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024]
Abstract
Tomato spotted wilt (TSW) disease caused by tomato spotted wilt orthotospovirus (TSWV, Orthotospovirus tomatomaculae) poses a significant threat to specialty and staple crops worldwide by causing over a billion dollars in crop losses annually. Current strategies for TSWV diagnosis heavily rely on nucleic acid or protein-based techniques which require significant technical expertise, and are invasive, time-consuming, and expensive, thereby catalyzing the search for better alternatives. In this study, we explored the potential of Raman spectroscopy (RS) in early detection of TSW in a non-invasive and non-destructive manner. Specifically, we investigated whether RS could be used to detect strain specific TSW symptoms associated with four TSWV strains infecting three differentially resistant tomato cultivars. In the acquired spectra, we observed notable reductions in the intensity of vibrational peaks associated with carotenoids. Using high-performance liquid chromatography (HPLC), we confirmed that TSWV caused a substantial decrease in the concentration of lutein that was detected by RS. Finally, we demonstrated that Partial Least Squares-Discriminant Analysis (PLS-DA) could be used to differentiate strain-specific TSW symptoms across all tested cultivars. These results demonstrate that RS can be a promising solution for early diagnosis of TSW, enabling timely disease intervention and thereby mitigating crop losses inflicted by TSWV.
Collapse
Affiliation(s)
- Isaac D. Juárez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, TX, United States
| | | | | | - Axell Rodriguez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, TX, United States
| | - Kiran R. Gadhave
- Department of Entomology, Texas A&M University, College Station, Texas, TX, United States
- Texas A&M AgriLife Research, Amarillo, Texas, TX, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, TX, United States
| |
Collapse
|
4
|
Wu HY, Li WH, Weng SH, Tsai WS, Tsai CW. Differential Effects of Two Tomato Begomoviruses on the Life History and Feeding Preference of Bemisia tabaci. INSECTS 2023; 14:870. [PMID: 37999069 PMCID: PMC10671868 DOI: 10.3390/insects14110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Tomato yellow leaf curl disease, caused by a group of closely related tomato yellow leaf curl viruses, is a major threat to tomato cultivation worldwide. These viruses are primarily transmitted by the sweet potato whitefly (Bemisia tabaci) in a persistent-circulative manner, wherein the virus circulates in the body of B. tabaci and infects its tissues. The complex relationship between viruses and whiteflies significantly influences virus transmission, with studies showing varying effects of the former on the life history and feeding preference of the latter. Whether these effects are direct or indirect, and whether they are negative, neutral, or positive, appears to depend on the specific interactions between virus and whitefly species. The tomato yellow leaf curl Thailand virus (TYLCTHV) and the tomato leaf curl Taiwan virus (ToLCTV) are two prevalent begomoviruses in fields in Taiwan. This study examined the direct and indirect effects of TYLCTHV and ToLCTV on the life history traits (longevity, fecundity, nymph survival, and nymph developmental time) and feeding preference of B. tabaci Middle East-Asia Minor 1 (MEAM1). The results revealed that TYLCTHV had no effects on these life history traits or the feeding preference of MEAM1 whiteflies. Although ToLCTV did not directly affect the longevity and fecundity of MEAM1 whiteflies, their fecundity and the nymph developmental time were negatively affected by feeding on ToLCTV-infected plants. In addition, ToLCTV infection also altered the feeding preference of MEAM1 whiteflies. The different effects of virus infection may contribute to the lower prevalence of ToLCTV compared to TYLCTHV in fields in Taiwan.
Collapse
Affiliation(s)
- Hsin-Yu Wu
- Department of Entomology, National Taiwan University, Taipei 106319, Taiwan; (H.-Y.W.); (W.-H.L.); (S.-H.W.)
| | - Wei-Hua Li
- Department of Entomology, National Taiwan University, Taipei 106319, Taiwan; (H.-Y.W.); (W.-H.L.); (S.-H.W.)
| | - Sung-Hsia Weng
- Department of Entomology, National Taiwan University, Taipei 106319, Taiwan; (H.-Y.W.); (W.-H.L.); (S.-H.W.)
| | - Wen-Shi Tsai
- Department of Plant Medicine, National Chiayi University, Chiayi 600335, Taiwan;
| | - Chi-Wei Tsai
- Department of Entomology, National Taiwan University, Taipei 106319, Taiwan; (H.-Y.W.); (W.-H.L.); (S.-H.W.)
| |
Collapse
|