1
|
Sira EMJS, Fajardo LE, Banico EC, Odchimar NMO, Orosco FL. Design of a Multiepitope Pan-Proteomic mRNA Vaccine Construct Against African Swine Fever Virus: A Reverse Vaccinology Approach. Vet Med Int 2025; 2025:2638167. [PMID: 39803351 PMCID: PMC11724734 DOI: 10.1155/vmi/2638167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious disease with devastating effects on the global pig industry. This warrants the development of effective control strategies, such as vaccines. However, previously developed inactivated vaccines have proven ineffective, while live-attenuated vaccines carry inherent safety risks. The use of mRNA vaccines eliminates these risks offering a safe, cost-effective, and efficient vaccine strategy against ASFV. In this study, a reverse vaccinology approach was used to design a multiepitope pan-proteomic mRNA vaccine against ASFV. Various bioinformatics tools were employed to predict epitopes for cytotoxic T lymphocytes, helper T lymphocytes, and B lymphocytes. A 50S ribosomal L7/L12 protein adjuvant, 5' cap, poly(A) tail, signal peptide, and MHC-I-targeting domain were incorporated into the design using appropriate linkers to increase immunogenicity, stability, and recognition efficiency. The physicochemical properties of the final construct were evaluated, and docking analyses were done with Toll-like receptors (TLRs) 3, 4, and 7 to evaluate binding affinity. A molecular dynamics simulation was then performed to determine binding stability, while immune simulations evaluated host's immune response. Based on 100 ASFV proteomes, six epitopes that induce cytotoxic T-cell responses, five epitopes that induce helper T-cell responses, and four epitopes that induce antibody production were predicted. The designed vaccine construct was found to be nonallergenic, antigenic, and stable when bound to TLR4 while the binding pocket analyses of the vaccine construct to TLR3 and TLR7 indicate high translation efficiency. Immune simulations demonstrated successful induction of immune responses and generation of antigen-specific memory cells. In conclusion, this study introduces an mRNA vaccine construct as a potential disease control strategy against ASF for in vitro confirmation.
Collapse
Affiliation(s)
- Ella Mae Joy S. Sira
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Technology Development Institute, Bicutan, Taguig 1634, Philippines
| | - Lauren Emily Fajardo
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Technology Development Institute, Bicutan, Taguig 1634, Philippines
| | - Edward C. Banico
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Technology Development Institute, Bicutan, Taguig 1634, Philippines
| | - Nyzar Mabeth O. Odchimar
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Technology Development Institute, Bicutan, Taguig 1634, Philippines
| | - Fredmoore L. Orosco
- Department of Science and Technology, Virology and Vaccine Research Program, Industrial Technology Development Institute, Bicutan, Taguig 1634, Philippines
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines
- Department of Science and Technology, S&T Fellows Program, Bicutan, Taguig 1634, Philippines
| |
Collapse
|
2
|
Pang F, Long Q, Liang S. Designing a multi-epitope subunit vaccine against Orf virus using molecular docking and molecular dynamics. Virulence 2024; 15:2398171. [PMID: 39258802 PMCID: PMC11404621 DOI: 10.1080/21505594.2024.2398171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 05/19/2024] [Indexed: 09/12/2024] Open
Abstract
Orf virus (ORFV) is an acute contact, epitheliotropic, zoonotic, and double-stranded DNA virus that causes significant economic losses in the livestock industry. The objective of this study is to design an immunoinformatics-based multi-epitope subunit vaccine against ORFV. Various immunodominant cytotoxic T lymphocytes (CTL), helper T lymphocytes (HTL), and B-cell epitopes from the B2L, F1L, and 080 protein of ORFV were selected and linked by short connectors to construct a multi-epitope subunit vaccine. Immunogenicity was enhanced by adding an adjuvant β-defensin to the N-terminal of the vaccine using the EAAAK linker. The vaccine exhibited a significant degree of antigenicity and solubility, without allergenicity or toxicity. The 3D formation of the vaccine was subsequently anticipated, improved, and verified. The optimized model exhibited a lower Z-score of -4.33, indicating higher quality. Molecular docking results demonstrated that the vaccine strongly binds to TLR2 and TLR4. Molecular dynamics results indicated that the docked vaccine-TLR complexes were stable. Immune simulation analyses further confirmed that the vaccine can induce a marked increase in IgG and IgM antibody titers, and elevated levels of IFN-γ and IL-2. Finally, the optimized DNA sequence of the vaccine was cloned into the vector pET28a (+) for high expression in the E.coli expression system. Overall, the designed multi-epitope subunit vaccine is highly stable and can induce robust humoral and cellular immunity, making it a promising vaccine candidate against ORFV.
Collapse
MESH Headings
- Vaccines, Subunit/immunology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/chemistry
- Molecular Docking Simulation
- Animals
- Orf virus/immunology
- Orf virus/genetics
- Viral Vaccines/immunology
- Viral Vaccines/chemistry
- Viral Vaccines/genetics
- Molecular Dynamics Simulation
- Mice
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Toll-Like Receptor 4/immunology
- Toll-Like Receptor 4/chemistry
- Ecthyma, Contagious/prevention & control
- Ecthyma, Contagious/immunology
- Ecthyma, Contagious/virology
- Mice, Inbred BALB C
- Female
- T-Lymphocytes, Cytotoxic/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
Collapse
Affiliation(s)
- Feng Pang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| | - Qinqin Long
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| | - Shaobo Liang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Kolla HB, Dutt M, Kumar A, Hebbandi Nanjunadappa R, Karakach T, Singh KP, Kelvin D, Clement Mertens PP, Umeshappa CS. Immuno-informatics study identifies conserved T cell epitopes in non-structural proteins of Bluetongue virus serotypes: formulation of a computationally optimized next-generation broad-spectrum multi-epitope vaccine. Front Immunol 2024; 15:1424307. [PMID: 39011043 PMCID: PMC11246920 DOI: 10.3389/fimmu.2024.1424307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Bluetongue (BT) poses a significant threat to the livestock industry, affecting various animal species and resulting in substantial economic losses. The existence of numerous BT virus (BTV) serotypes has hindered control efforts, highlighting the need for broad-spectrum vaccines. Methodology In this study, we evaluated the conserved amino acid sequences within key non-structural (NS) proteins of BTV and identified numerous highly conserved murine- and bovine-specific MHC class I-restricted (MHC-I) CD8+ and MHC-II-restricted CD4+ epitopes. We then screened these conserved epitopes for antigenicity, allergenicity, toxicity, and solubility. Using these epitopes, we developed in silico-based broad-spectrum multiepitope vaccines with Toll-like receptor (TLR-4) agonists. The predicted proinflammatory cytokine response was assessed in silico using the C-IMMSIM server. Structural modeling and refinement were achieved using Robetta and GalaxyWEB servers. Finally, we assessed the stability of the docking complexes through extensive 100-nanosecond molecular dynamics simulations before considering the vaccines for codon optimization and in silico cloning. Results We found many epitopes that meet these criteria within NS1 and NS2 proteins and developed in silico broad-spectrum vaccines. The immune simulation studies revealed that these vaccines induce high levels of IFN-γ and IL-2 in the vaccinated groups. Protein-protein docking analysis demonstrated promising epitopes with strong binding affinities to TLR-4. The docked complexes were stable, with minimal Root Mean Square Deviation and Root Mean Square Fluctuation values. Finally, the in silico-cloned plasmids have high % of GC content with > 0.8 codon adaptation index, suggesting they are suitable for expressing the protein vaccines in prokaryotic system. Discussion These next-generation vaccine designs are promising and warrant further investigation in wet lab experiments to assess their immunogenicity, safety, and efficacy for practical application in livestock. Our findings offer a robust framework for developing a comprehensive, broad-spectrum vaccine, potentially revolutionizing BT control and prevention strategies in the livestock industry.
Collapse
Affiliation(s)
- Harish Babu Kolla
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Mansi Dutt
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Anuj Kumar
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Roopa Hebbandi Nanjunadappa
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Tobias Karakach
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Karam Pal Singh
- Center for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Bareilly, India
| | - David Kelvin
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | | | - Channakeshava Sokke Umeshappa
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
4
|
Sira EMJS, Banico EC, Odchimar NMO, Fajardo LE, Fremista FF, Refuerzo HAB, Dictado APA, Orosco FL. Immunoinformatics approach for designing a multiepitope subunit vaccine against porcine epidemic diarrhea virus genotype IIA spike protein. Open Vet J 2024; 14:1224-1242. [PMID: 38938443 PMCID: PMC11199741 DOI: 10.5455/ovj.2024.v14.i5.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/26/2024] [Indexed: 06/29/2024] Open
Abstract
Background Porcine epidemic diarrhea (PED), caused by the porcine epidemic diarrhea virus (PEDV), is associated with high mortality and morbidity rates, especially in neonatal pigs. This has resulted in significant economic losses for the pig industry. PEDV genotype II-based vaccines were found to confer better immunity against both heterologous and homologous challenges; specifically, spike (S) proteins, which are known to play a significant role during infection, are ideal for vaccine development. Aim This study aims to design a multi-epitope subunit vaccine targeting the S protein of the PEDV GIIa strain using an immunoinformatics approach. Methods Various bioinformatics tools were used to predict HTL, CTL, and B-cell epitopes. The epitopes were connected using appropriate linkers and conjugated with the CTB adjuvant and M-ligand. The final multiepitope vaccine construct (fMEVc) was then docked to toll-like receptor 4 (TLR4). The stability of the fMEVc-TLR4 complex was then simulated using GROMACS. C-immsim was then used to predict the in vitro immune response of the fMEVc. Results Six epitopes were predicted to induce antibody production, ten epitopes were predicted to induce CTL responses, and four epitopes were predicted to induce HTL responses. The assembled epitopes conjugated with the CTB adjuvant and M-ligand, fMEVc, is antigenic, non-allergenic, stable, and soluble. The construct showed a favorable binding affinity for TLR4, and the protein complex was shown to be stable through molecular dynamics simulations. A robust immune response was induced after immunization, as demonstrated through immune stimulation. Conclusion In conclusion, the multi-epitope subunit vaccine construct for PEDV designed in this study exhibits promising antigenicity, stability, and immunogenicity, eliciting robust immune responses and suggesting its potential as a candidate for further vaccine development.
Collapse
Affiliation(s)
- Ella Mae Joy S. Sira
- Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig City, Philippines
| | - Edward C. Banico
- Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig City, Philippines
| | - Nyzar Mabeth O. Odchimar
- Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig City, Philippines
| | - Lauren Emily Fajardo
- Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig City, Philippines
| | - Ferdinand F. Fremista
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Philippines
| | | | - Ana Patrisha A. Dictado
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Philippines
| | - Fredmoore L. Orosco
- Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig City, Philippines
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Philippines
- S&T Fellows Program, Department of Science and Technology, Taguig City, Philippines
| |
Collapse
|
5
|
Lu Q, Wu H, Meng J, Wang J, Wu J, Liu S, Tong J, Nie J, Huang W. Multi-epitope vaccine design for hepatitis E virus based on protein ORF2 and ORF3. Front Microbiol 2024; 15:1372069. [PMID: 38577684 PMCID: PMC10991829 DOI: 10.3389/fmicb.2024.1372069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Hepatitis E virus (HEV), with heightened virulence in immunocompromised individuals and pregnant women, is a pervasive threat in developing countries. A globaly available vaccine against HEV is currently lacking. Methods We designed a multi-epitope vaccine based on protein ORF2 and ORF3 of HEV using immunoinformatics. Results The vaccine comprised 23 nontoxic, nonallergenic, soluble peptides. The stability of the docked peptide vaccine-TLR3 complex was validated by molecular dynamic simulations. The induction of effective cellular and humoral immune responses by the multi-peptide vaccine was verified by simulated immunization. Discussion These findings provide a foundation for future HEV vaccine studies.
Collapse
Affiliation(s)
- Qiong Lu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Hao Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Jing Meng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu, China
| | | | - Jiajing Wu
- Research and Development Department, Beijing Yunling Biotechnology Co., Ltd., Beijing, China
| | - Shuo Liu
- Changping Laboratory, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Jincheng Tong
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| |
Collapse
|
6
|
Long Q, Wei M, Wang Y, Pang F. Design of a multi-epitope vaccine against goatpox virus using an immunoinformatics approach. Front Cell Infect Microbiol 2024; 13:1309096. [PMID: 38487680 PMCID: PMC10937444 DOI: 10.3389/fcimb.2023.1309096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/22/2023] [Indexed: 03/17/2024] Open
Abstract
Introduction Goatpox, a severe infectious disease caused by goatpox virus (GTPV), leads to enormous economic losses in the livestock industry. Traditional live attenuated vaccines cause serious side effects and exist a risk of dispersal. Therefore, it is urgent to develop efficient and safer vaccines to prevent and control of GTPV. Methods In the present study, we are aimed to design a multi-epitope subunit vaccine against GTPV using an immunoinformatics approach. Various immunodominant cytotoxic T lymphocytes (CTL) epitopes, helper T lymphocytes (HTL) epitopes, and B-cell epitopes from P32, L1R, and 095 proteins of GTPV were screened and liked by the AAY, GPGPG, and KK connectors, respectively. Furthermore, an adjuvant β-defensin was attached to the vaccine's N-terminal using the EAAAK linker to enhance immunogenicity. Results The constructed vaccine was soluble, non-allergenic and non-toxic and exhibited high levels of antigenicity and immunogenicity. The vaccine's 3D structure was subsequently predicted, refined and validated, resulting in an optimized model with a Z-value of -3.4. Molecular docking results demonstrated that the vaccine had strong binding affinity with TLR2(-27.25 kcal/mol), TLR3(-39.84 kcal/mol), and TLR4(-59.42 kcal/mol). Molecular dynamics simulation results indicated that docked vaccine-TLR complexes were stable. Immune simulation analysis suggested that the vaccine can induce remarkable increase in antibody titers of IgG and IgM, higher levels of IFN-γ and IL-2. Conclusion The designed GTPV multi-epitope vaccine is structurally stable and can induce robust humoral and cellular immune responses, which may be a promising vaccine candidate against GTPV.
Collapse
Affiliation(s)
| | | | | | - Feng Pang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|