1
|
Hong HW, Jang J, Kim YD, Jeong TH, Lee D, Park K, Kim MS, Yoon IS, Song M, Seo MD, Yoon H, Lim D, Myung H. In vitro and in vivo efficacy studies of an engineered endolysin targeting Gram-negative pathogens. Int J Biol Macromol 2025; 302:140463. [PMID: 39884635 DOI: 10.1016/j.ijbiomac.2025.140463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Endolysins have drawn considerable attention as viable modalities for antibiotic use. The most significant obstacle for Gram-negative targeting endolysins is the presence of the outer membrane barrier. A heterologously expressed endolysin encoded by bacteriophage PBPA90 infecting Pseudomonas aeruginosa exhibited intrinsic antibacterial activity against P. aeruginosa. The antibacterial efficacy was improved by substituting 15 amino acids and by fusing cecropin A to the N-terminus. The resulting engineered endolysin, LNT103, demonstrated strong antibacterial activity, with minimum inhibitory concentrations as low as 4 μg/ml, against various Gram-negative pathogens in addition to P. aeruginosa, including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Klebsiella aerogenes, and Enterobacter cloacae. The engineered endolysin rendered both the outer and the inner bacterial membranes permeable. It exhibited a synergistic effect with colistin, and additive effects with carbapenem antibiotics. Bacterial resistance development to LNT103 was none to minimal in vitro. Its in vivo efficacy was verified in bacteremia models of mice infected with A. baumannii. The endolysin led to a resensitization of resistant bacteria to meropenem when used in combination in vivo.
Collapse
Affiliation(s)
- Hye-Won Hong
- LyseNTech Co., Ltd., Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea
| | - Jaeyeon Jang
- LyseNTech Co., Ltd., Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea
| | - Young Deuk Kim
- LyseNTech Co., Ltd., Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea
| | - Tae-Hwan Jeong
- LyseNTech Co., Ltd., Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea
| | - Dogeun Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Kyungah Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi-Do 16499, Republic of Korea
| | - Min Soo Kim
- LyseNTech Co., Ltd., Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea
| | - In-Soo Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Miryoung Song
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, Gyeonggi-Do 17035, Republic of Korea
| | - Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi-Do 16499, Republic of Korea; College of Pharmacy, Ajou University, Suwon, Gyeonggi-Do 16499, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi-Do 16499, Republic of Korea; Advanced College of Bio-convergence Engineering, Ajou University, Suwon, Gyeonggi-Do 16499, South Korea
| | - Daejin Lim
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Heejoon Myung
- LyseNTech Co., Ltd., Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea; Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, Gyeonggi-Do 17035, Republic of Korea; The Bacteriophage Bank of Korea, Suite 1002, Innovalley C, 253 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi-Do 13486, Republic of Korea.
| |
Collapse
|
2
|
Kumar G. Natural peptides and their synthetic congeners acting against Acinetobacter baumannii through the membrane and cell wall: latest progress. RSC Med Chem 2025; 16:561-604. [PMID: 39664362 PMCID: PMC11629675 DOI: 10.1039/d4md00745j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Acinetobacter baumannii is one of the deadliest Gram-negative bacteria (GNB), responsible for 2-10% of hospital-acquired infections. Several antibiotics are used to control the growth of A. baumannii. However, in recent decades, the abuse and misuse of antibiotics to treat non-microbial diseases have led to the emergence of multidrug-resistant A. baumannii strains. A. baumannii possesses a complex cell wall structure. Cell wall-targeting agents remain the center of antibiotic drug discovery. Notably, the antibacterial drug discovery intends to target the membrane of the bacteria, offering several advantages over antibiotics targeting intracellular systems, as membrane-targeting agents do not have to travel through the plasma membrane to reach the cytoplasmic targets. Microorganisms, insects, and mammals produce antimicrobial peptides as their first line of defense to protect themselves from pathogens and predators. Importantly, antimicrobial peptides are considered potential alternatives to antibiotics. This communication summarises the recently identified peptides of natural origin and their synthetic congeners acting against the A. baumannii membrane by cell wall disruption.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| |
Collapse
|
3
|
Garcia Torres S, Henrich D, Verboket RD, Marzi I, Hahne G, Kempf VAJ, Göttig S. Bactericidal Effect of a Novel Phage Endolysin Targeting Multi-Drug-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2025; 14:162. [PMID: 40001406 PMCID: PMC11851708 DOI: 10.3390/antibiotics14020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Infections with antibiotic-resistant Gram-negative pathogens represent a major global threat to public health. Acinetobacter baumannii is a highly important nosocomial pathogen causing severe and life-threatening infections, like pneumonia, wound infections, or sepsis. It is often resistant even against last-resort antibiotics, such as carbapenems, and can persist in healthcare settings. Artilysin®s are a novel class of endolysins targeted against multidrug-resistant bacteria. METHODS Antibacterial activity of Art-Top3 was determined by broth microdilution, in vitro assays and in the Galleria mellonella infection model. The toxicity of Art-Top3 on red blood cells, endothelial and epithelial cells was analyzed using the MTT assay. RESULTS Here, we report on a new Artilysin® Art-Top3 that is active against A. baumannii and led to a 105-fold reduction in viable A. baumannii after five minutes of exposure. Art-Top3 showed activity against A. baumannii biofilms in static and dynamic experimental infection models. Furthermore, upon infection with carbapenem-resistant A. baumannii patient isolates, Art-Top3 was able to rescue human primary cells in vitro and larvae of Galleria mellonella in an in vivo infection model. Art-Top3 did not lyse human red blood cells and showed activity in human serum, indicating a low toxicity and high stability of Art-Top3 in vitro. CONCLUSION Our findings collectively establish that Art-Top3 might be a candidate for novel therapeutic strategies of infections caused by multidrug-resistant A. baumannii pathogens.
Collapse
Affiliation(s)
- Sara Garcia Torres
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, 60596 Frankfurt am Main, Germany;
| | - Dirk Henrich
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, 60590 Frankfurt am Main, Germany; (D.H.); (R.D.V.); (I.M.)
| | - Rene D. Verboket
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, 60590 Frankfurt am Main, Germany; (D.H.); (R.D.V.); (I.M.)
| | - Ingo Marzi
- Goethe University Frankfurt, University Hospital, Department of Trauma Surgery and Orthopedics, 60590 Frankfurt am Main, Germany; (D.H.); (R.D.V.); (I.M.)
| | - Gernot Hahne
- Lysando Innovations Lab GmbH, 93053 Regensburg, Germany;
| | - Volkhard A. J. Kempf
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, 60596 Frankfurt am Main, Germany;
| | - Stephan Göttig
- Goethe University Frankfurt, University Hospital, Institute of Medical Microbiology and Infection Control, 60596 Frankfurt am Main, Germany;
| |
Collapse
|
4
|
Teymouri S, Yousefi MH, Heidari S, Farokhi S, Afkhami H, Kashfi M. Beyond antibiotics: mesenchymal stem cells and bacteriophages-new approaches to combat bacterial resistance in wound infections. Mol Biol Rep 2024; 52:64. [PMID: 39699690 DOI: 10.1007/s11033-024-10163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Wound management is a major global health problem. With the rising incidence of diabetic wounds, accidents, and other injuries, the demand for prompt wound treatment has become increasingly critical. Millions of people suffer from serious, large wounds resulting from major accidents, surgeries, and wars. These wounds require considerable time to heal and are susceptible to infection. Furthermore, chronic wounds, particularly in elderly and diabetic patients, often require frequent medical interventions to prevent complications. Consequently, wound management imposes a significant economic burden worldwide. The complications arising from wound infections can vary from localized issues to systemic effects. The most severe local complication of wound infection is the non-healing, which results from the disruption of the wound-healing process. This often leads to significant pain, discomfort, and psychological trauma for the patient. Systemic complications may include cellulitis, osteomyelitis, and septicemia. Mesenchymal stem cells are characterized by their high capacity for division, making them suitable candidates for the treatment of tissue damage. Additionally, they produce antimicrobial peptides and various cytokines, which enhance their antimicrobial activity. Evidence shows that phages are effective in treating wound-related infections, and phage therapy has proven to be highly effective for patients when administered correctly. The purpose of this article is to explore the use of bacteriophages and mesenchymal stem cells in wound healing and infection management.
Collapse
Affiliation(s)
- Samane Teymouri
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Khan FM, Rasheed F, Yang Y, Liu B, Zhang R. Endolysins: a new antimicrobial agent against antimicrobial resistance. Strategies and opportunities in overcoming the challenges of endolysins against Gram-negative bacteria. Front Pharmacol 2024; 15:1385261. [PMID: 38831886 PMCID: PMC11144922 DOI: 10.3389/fphar.2024.1385261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024] Open
Abstract
Antibiotic-resistant bacteria are rapidly emerging, and the increasing prevalence of multidrug-resistant (MDR) Acinetobacter baumannii poses a severe threat to humans and healthcare organizations, due to the lack of innovative antibacterial drugs. Endolysins, which are peptidoglycan hydrolases encoded by a bacteriophage, are a promising new family of antimicrobials. Endolysins have been demonstrated as an effective therapeutic agent against bacterial infections of A. baumannii and many other Gram-positive and Gram-negative bacteria. Endolysin research has progressed from basic in vitro characterization to sophisticated protein engineering methodologies, including advanced preclinical and clinical testing. Endolysin are therapeutic agent that shows antimicrobial properties against bacterial infections caused by drug-resistant Gram-negative bacteria, there are still barriers to their implementation in clinical settings, such as safety concerns with outer membrane permeabilizers (OMP) use, low efficiency against stationary phase bacteria, and stability issues. The application of protein engineering and formulation techniques to improve enzyme stability, as well as combination therapy with other types of antibacterial drugs to optimize their medicinal value, have been reviewed as well. In this review, we summarize the clinical development of endolysin and its challenges and approaches for bringing endolysin therapies to the clinic. This review also discusses the different applications of endolysins.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Fazal Rasheed
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yunlan Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
6
|
Szadkowska M, Kocot AM, Sowik D, Wyrzykowski D, Jankowska E, Kozlowski LP, Makowska J, Plotka M. Molecular characterization of the PhiKo endolysin from Thermus thermophilus HB27 bacteriophage phiKo and its cryptic lytic peptide RAP-29. Front Microbiol 2024; 14:1303794. [PMID: 38312500 PMCID: PMC10836841 DOI: 10.3389/fmicb.2023.1303794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/12/2023] [Indexed: 02/06/2024] Open
Abstract
Introduction In the era of increasing bacterial resistance to antibiotics, new bactericidal substances are sought, and lysins derived from extremophilic organisms have the undoubted advantage of being stable under harsh environmental conditions. The PhiKo endolysin is derived from the phiKo bacteriophage infecting Gram-negative extremophilic bacterium Thermus thermophilus HB27. This enzyme shows similarity to two previously investigated thermostable type-2 amidases, the Ts2631 and Ph2119 from Thermus scotoductus bacteriophages, that revealed high lytic activity not only against thermophiles but also against Gram-negative mesophilic bacteria. Therefore, antibacterial potential of the PhiKo endolysin was investigated in the study presented here. Methods Enzyme activity was assessed using turbidity reduction assays (TRAs) and antibacterial tests. Differential scanning calorimetry was applied to evaluate protein stability. The Collection of Anti-Microbial Peptides (CAMP) and Antimicrobial Peptide Calculator and Predictor (APD3) were used to predict regions with antimicrobial potential in the PhiKo primary sequence. The minimum inhibitory concentration (MIC) of the RAP-29 synthetic peptide was determined against Gram-positive and Gram-negative selected strains, and mechanism of action was investigated with use of membrane potential sensitive fluorescent dye 3,3'-Dipropylthiacarbocyanine iodide (DiSC3(5)). Results and discussion The PhiKo endolysin is highly thermostable with melting temperature of 91.70°C. However, despite its lytic effect against such extremophiles as: T. thermophilus, Thermus flavus, Thermus parvatiensis, Thermus scotoductus, and Deinococcus radiodurans, PhiKo showed moderate antibacterial activity against mesophiles. Consequently, its protein sequence was searched for regions with potential antibacterial activity. A highly positively charged region was identified and synthetized (PhiKo105-133). The novel RAP-29 peptide lysed mesophilic strains of staphylococci and Gram-negative bacteria, reducing the number of cells by 3.7-7.1 log units and reaching the minimum inhibitory concentration values in the range of 2-31 μM. This peptide is unstructured in an aqueous solution but forms an α-helix in the presence of detergents. Moreover, it binds lipoteichoic acid and lipopolysaccharide, and causes depolarization of bacterial membranes. The RAP-29 peptide is a promising candidate for combating bacterial pathogens. The existence of this cryptic peptide testifies to a much wider panel of antimicrobial peptides than thought previously.
Collapse
Affiliation(s)
- Monika Szadkowska
- Laboratory of Extremophiles Biology, Department of Microbiology, University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Maria Kocot
- Laboratory of Extremophiles Biology, Department of Microbiology, University of Gdańsk, Gdańsk, Poland
| | - Daria Sowik
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Dariusz Wyrzykowski
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Elzbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Lukasz Pawel Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Joanna Makowska
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|