1
|
Hassanin AAI, Ramos KS. Modulation of the Oncogenic LINE-1 Regulatory Network in Non-Small Cell Lung Cancer by Exosomal miRNAs. Int J Mol Sci 2024; 25:10674. [PMID: 39409003 PMCID: PMC11477113 DOI: 10.3390/ijms251910674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Several microRNAs (miRNAs), including miR-221-5p, Let-7b-5p, miR-21-5p, miR-9-5p, miR-126-3p, and miR-222-3p, were recently found to be enriched in circulating exosomes of patients with non-small cell lung cancers (NSCLCs). These miRNAs distinguished cancer cases from controls with high precision and were predicted to modulate the expression of genes within the oncogenic LINE-1 regulatory network. To test this hypothesis, plasma exosomes from controls, early, and late-stage NSCLC patients were co-cultured with non-tumorigenic lung epithelial cells for 72 h and processed for measurements of gene expression. Exosomes from late-stage NSCLC patients markedly increased the mRNA levels of LINE-1 ORF1 and ORF2, as well as the levels of target miRNAs in naïve recipient cells compared to saline or control exosomes. Late-stage exosomes also modulated the expression of oncogenic targets within the LINE-1 regulatory network, namely, ICAM1, AGL, RGS3, RGS13, VCAM1, and TGFβ1. In sharp contrast, exosomes from controls or early-stage NSCLC patients inhibited LINE-1 expression, along with many of the genetic targets within the LINE-1 regulatory network. Thus, late-stage NSCLC exosomes activate LINE-1 and miRNA-regulated oncogenic signaling in non-tumorigenic, recipient lung bronchial epithelial cells. These findings raise important questions regarding lung cancer progression and metastasis and open the door for the exploration of new therapeutic interventions.
Collapse
Affiliation(s)
- Abeer A. I. Hassanin
- Center for Genomic and Precision Medicine, Texas Medical Center, Texas A&M Institute of Biosciences and Technology, Houston, TX 77030, USA;
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Kenneth S. Ramos
- Center for Genomic and Precision Medicine, Texas Medical Center, Texas A&M Institute of Biosciences and Technology, Houston, TX 77030, USA;
| |
Collapse
|
2
|
Verma VK, Beevi SS, Nair RA, Kumar A, Kiran R, Alexander LE, Dinesh Kumar L. MicroRNA signatures differentiate types, grades, and stages of breast invasive ductal carcinoma (IDC): miRNA-target interacting signaling pathways. Cell Commun Signal 2024; 22:100. [PMID: 38326829 PMCID: PMC10851529 DOI: 10.1186/s12964-023-01452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Invasive ductal carcinoma (IDC) is the most common form of breast cancer which accounts for 85% of all breast cancer diagnoses. Non-invasive and early stages have a better prognosis than late-stage invasive cancer that has spread to lymph nodes. The involvement of microRNAs (miRNAs) in the initiation and progression of breast cancer holds great promise for the development of molecular tools for early diagnosis and prognosis. Therefore, developing a cost effective, quick and robust early detection protocol using miRNAs for breast cancer diagnosis is an imminent need that could strengthen the health care system to tackle this disease around the world. METHODS We have analyzed putative miRNAs signatures in 100 breast cancer samples using two independent high fidelity array systems. Unique and common miRNA signatures from both array systems were validated using stringent double-blind individual TaqMan assays and their expression pattern was confirmed with tissue microarrays and northern analysis. In silico analysis were carried out to find miRNA targets and were validated with q-PCR and immunoblotting. In addition, functional validation using antibody arrays was also carried out to confirm the oncotargets and their networking in different pathways. Similar profiling was carried out in Brca2/p53 double knock out mice models using rodent miRNA microarrays that revealed common signatures with human arrays which could be used for future in vivo functional validation. RESULTS Expression profile revealed 85% downregulated and 15% upregulated microRNAs in the patient samples of IDC. Among them, 439 miRNAs were associated with breast cancer, out of which 107 miRNAs qualified to be potential biomarkers for the stratification of different types, grades and stages of IDC after stringent validation. Functional validation of their putative targets revealed extensive miRNA network in different oncogenic pathways thus contributing to epithelial-mesenchymal transition (EMT) and cellular plasticity. CONCLUSION This study revealed potential biomarkers for the robust classification as well as rapid, cost effective and early detection of IDC of breast cancer. It not only confirmed the role of these miRNAs in cancer development but also revealed the oncogenic pathways involved in different progressive grades and stages thus suggesting a role in EMT and cellular plasticity during breast tumorigenesis per se and IDC in particular. Thus, our findings have provided newer insights into the miRNA signatures for the classification and early detection of IDC.
Collapse
Affiliation(s)
- Vinod Kumar Verma
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Syed Sultan Beevi
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Rekha A Nair
- Department of Pathology, Regional Cancer Centre (RCC), Medical College Campus, Trivandrum, 695011, India
| | - Aviral Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Ravi Kiran
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Liza Esther Alexander
- Department of Pathology, Regional Cancer Centre (RCC), Medical College Campus, Trivandrum, 695011, India
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
3
|
Efimova AS, Antipenko ID, Evtushenko EA, Balan PV, Tonevitskaya SA. Effect of IGFBP6 Knockdown on Proteins Regulating Exosome Synthesis and Secretion in MDA-MB-231 Cell Line. Bull Exp Biol Med 2023:10.1007/s10517-023-05828-9. [PMID: 37336811 DOI: 10.1007/s10517-023-05828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 06/21/2023]
Abstract
One of the potential causes of cancer recurrence is disruption of the cell-cell communication in the primary tumors that is realized, among other things, through secretion and uptake of exosomes by cells. Low expression of the IGFBP6 gene (insulin-like growth factor binding protein 6) is associated with a high recurrence rate and can serve as a prognostic marker of luminal breast cancer. The knockdown of the IGFBP6 gene leads to significant changes in lipid metabolism. We performed a quantitative analysis of both exosomes and proteins involved in the mechanism of their biogenesis. Changes in the expression profile of mRNAs and their proteins responsible for the synthesis and secretion of exosomes were revealed. We showed a decrease in the expression of the of the VPS28 gene mRNA (vacuolar protein sorting-associated protein 28) and the corresponding protein by 2.3 and 5.6 times, respectively. The secretion of exosomes by MDA-MB-231 cells with IGFBP6 knockdown decreased by 2 times. We discussed a mechanism of disruption of cell-cell communication.
Collapse
Affiliation(s)
- A S Efimova
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia.
| | - I D Antipenko
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - E A Evtushenko
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - P V Balan
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - S A Tonevitskaya
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
4
|
Zhiyanov AP, Shkurnikov MY. SARS-CoV-2 Mutations Lead to a Decrease in the Number of Tissue-Specific MicroRNA-Binding Regions in the Lung. Bull Exp Biol Med 2023; 174:527-532. [PMID: 36899205 PMCID: PMC10005917 DOI: 10.1007/s10517-023-05742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 03/12/2023]
Abstract
RNA interference in vertebrates acts as an antiviral mechanism only in undifferentiated embryonic stem cells and is mediated by microRNAs. In somatic cells, host microRNAs also bind to the genomes of RNA viruses, regulating their translation and replication. It has been shown that viral (+)RNA can evolve under the influence of host cell miRNAs. In more than two years of the pandemic, the SARS-CoV-2 virus has mutated significantly. It is quite possible that some mutations could be retained in the virus genome under the influence of miRNAs produced by alveolar cells. We demonstrated that microRNAs in human lung tissue exert evolutionary pressure on the SARS-CoV-2 genome. Moreover, a significant number of sites of host microRNA binding with the virus genome are located in the NSP3-NSP5 region responsible for autoproteolysis of viral polypeptides.
Collapse
Affiliation(s)
- A P Zhiyanov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - M Yu Shkurnikov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
- Faculty of Biology and Biotechnologies, Higher School of Economics (HSE University), Moscow, Russia.
| |
Collapse
|
5
|
Sabbaghian A, Mussack V, Kirchner B, Bui MLU, Kalani MR, Pfaffl MW, Golalipour M. A panel of blood-derived miRNAs with a stable expression pattern as a potential pan-cancer detection signature. Front Mol Biosci 2022; 9:1030749. [PMID: 36589227 PMCID: PMC9798419 DOI: 10.3389/fmolb.2022.1030749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction: MicroRNAs have a significant role in the regulation of the transcriptome. Several miRNAs have been proposed as potential biomarkers in different malignancies. However, contradictory results have been reported on the capability of miRNA biomarkers in cancer detection. The human biological clock involves molecular mechanisms that regulate several genes over time. Therefore, the sampling time becomes one of the significant factors in gene expression studies. Method: In the present study, we have tried to find miRNAs with minimum fluctuation in expression levels at different time points that could be more accurate candidates as diagnostic biomarkers. The small RNA-seq raw data of ten healthy individuals across nine-time points were analyzed to identify miRNAs with stable expression. Results: We have found five oscillation patterns. The stable miRNAs were investigated in 779 small-RNA-seq datasets of eleven cancer types. All miRNAs with the highest differential expression were selected for further analysis. The selected miRNAs were explored for functional pathways. The predominantly enriched pathways were miRNA in cancer and the P53-signaling pathway. Finally, we have found seven miRNAs, including miR-142-3p, miR-199a-5p, miR-223-5p, let-7d-5p, miR-148b-3p, miR-340-5p, and miR-421. These miRNAs showed minimum fluctuation in healthy blood and were dysregulated in the blood of eleven cancer types. Conclusion: We have found a signature of seven stable miRNAs which dysregulate in several cancer types and may serve as potential pan-cancer biomarkers.
Collapse
Affiliation(s)
- Amir Sabbaghian
- Department of Molecular Medicine, Advanced Technologies Faculty, Golestan University of Medical Science, Gorgan, Iran
| | - Veronika Mussack
- Department of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Benedikt Kirchner
- Department of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Maria L. U. Bui
- Department of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Mohammad Reza Kalani
- Department of Molecular Medicine, Advanced Technologies Faculty, Golestan University of Medical Science, Gorgan, Iran
| | - Michael W. Pfaffl
- Department of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Masoud Golalipour
- Department of Molecular Medicine, Advanced Technologies Faculty, Golestan University of Medical Science, Gorgan, Iran
- Cellular and Molecular Research Center, Golestan University of Medical Science, Gorgan, Iran
| |
Collapse
|
6
|
MiRNAs and circRNAs for the Diagnosis of Anthracycline-Induced Cardiotoxicity in Breast Cancer Patients: A Narrative Review. J Pers Med 2022; 12:jpm12071059. [PMID: 35887556 PMCID: PMC9315470 DOI: 10.3390/jpm12071059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022] Open
Abstract
Breast cancer (BC) is the most frequent type of female cancer with increasing incidence in recent years. Doxorubicin (DOX) is an important backbone chemotherapy in BC, responsible for cardiotoxicity (CTX) in about 9% of treated women within the first year. Biomarkers of early CTX diagnosis are essential to avoid complicated DOX-related cardiac diseases. Traditional serum biomarkers are either poorly sensitive with transient elevation, and even absent if investigated outside their diagnostic window, or arise only in late-stage CTX. Emerging biomarkers such as non-coding RNA (ncRNA) have been recently investigated in DOX-related CTX. In our review, we revised the role of microRNAs, the most studied type of ncRNA, both in animal and human models, highlighting the interesting but often contrasting results. Moreover, we reviewed a novel class of ncRNA, circular RNA (circRNA), focusing on their modulatory mechanisms also involving microRNAs. MicroRNA and circRNA are players in a wide homeostatic balance with their perturbation representing a possible compensation for DOX damage. Further studies are required to assess the modalities of early detection of their variation in BC patients suffering from heart disease induced by DOX treatment.
Collapse
|
7
|
Nersisyan SA. Isoforms of miR-148a and miR-203a are putative suppressors of colorectal cancer. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MicroRNAs are short non-coding molecules which regulate translation in a gene-specific manner. MicroRNA isoforms that differ by few extra or missing nucleotides at the 5'-terminus (5'-isomiR) show strikingly different target specificity. This study aimed to identify functional roles of 5′-isomiR in colorectal cancers. Transcriptomic targets of microRNA isoforms were predicted using bioinformatics tools miRDB and TargetScan. The sets of putative targets identified for 5′-isomiR were integrated with mRNA and microRNA sequencing data for primary colorectal tumors retrieved from The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) database. The network of interactions among miRNA, their targets and transcription factors was built using the miRGTF-net algorithm. The results indicate that microRNA isoforms highly expressed in colorectal cancer and differing by a single nucleotide position at the 5'-terminus have ≤ 30% common targets. The regulatory network of interactions enables identification of the most engaged microRNA isoforms. Anti-correlated expression levels of canonical microRNA hsa-miR-148a-3p and its putative targets including CSF1, ETS1, FLT1, ITGA5, MEIS1, MITF and RUNX2 proliferation regulators suggest an anti-tumor role for this molecule. The canonical microRNA hsa-miR-203a-3p|0 and its 5′-isoform bind different sets of anti-correlated putative targets, although both of them interact with genes involved in the epithelial-mesenchymal transition: SNAI2 and TNC.
Collapse
Affiliation(s)
- SA Nersisyan
- National Research University Higher School of Economics (HSE), Moscow, Russia
| |
Collapse
|
8
|
Raigorodskaya MP, Zhiyanov AP, Averinskaya DA, Tonevitsky EA. Changes in the Expression of miRNA Isoforms and Their Targets in HT-29 Cells after Hypoxic Exposure. Bull Exp Biol Med 2022; 173:123-127. [PMID: 35624351 DOI: 10.1007/s10517-022-05506-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/28/2022]
Abstract
Tumor hypoxia is one of the main causes of progression and metastasis of colorectal cancer. Changes in the expression of miRNA responsible for post-translation regulation of gene expression is an important molecular mechanism of cell response to hypoxia. We performed sequencing of miRNA and mRNA of human colorectal adenocarcinoma HT-29 cells treated with two chemical agents mimicking hypoxia: cobalt (II) chloride and oxyquinoline. Bioinformatics analysis revealed differentially expressed miRNA isoforms (hsa-miR-210-3p|0, hsa-miR- 22-3p|0, hsa-let-7a-3p|0, hsa-miR-615-3p|0, and hsa-miR-4521|0) and their targets that changed their expression in both models of hypoxia. Thus, we identified new regulatory mechanisms of cell response to hypoxia.
Collapse
Affiliation(s)
- M P Raigorodskaya
- Faculty of Biology and Biotechnologies, Higher School of Economics (HSE University), Moscow, Russia
| | - A P Zhiyanov
- Faculty of Biology and Biotechnologies, Higher School of Economics (HSE University), Moscow, Russia.
| | - D A Averinskaya
- Faculty of Biology and Biotechnologies, Higher School of Economics (HSE University), Moscow, Russia
| | - E A Tonevitsky
- Faculty of Biology and Biotechnologies, Higher School of Economics (HSE University), Moscow, Russia
| |
Collapse
|
9
|
Preethi KA, Selvakumar SC, Ross K, Jayaraman S, Tusubira D, Sekar D. Liquid biopsy: Exosomal microRNAs as novel diagnostic and prognostic biomarkers in cancer. Mol Cancer 2022; 21:54. [PMID: 35172817 PMCID: PMC8848669 DOI: 10.1186/s12943-022-01525-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Detecting cancer at an early stage before clinical manifestation could be an effective strategy to decrease cancer mortality. Thus, identifying liquid biopsy biomarkers with high efficacy could be a promising approach for non-invasive diagnosis of cancer. MAIN TEXT Liquid biopsies are increasingly used as a supplement to biopsy, as it enables disease progression to be detected months before clinical and radiographic confirmation. Many bodily fluids contain exosomal microRNAs (miRNAs) which could provide a new class of biomarkers for early and minimally invasive cancer diagnosis due to the stability of miRNAs in exosomes. In this review, we mainly focused on the exosomal miRNAs (liquid biopsy) as biomarkers in the diagnosis and prognosis of various cancers. CONCLUSION Exosomal miRNAs can be used as diagnostic and prognosis biomarkers that provide unique insights and a more dynamic perspective of the progression and therapeutic responses in various malignancies. Therefore, the development of novel and more sensitive technologies that exploit exosomal miRNAs should be a priority for cancer management.
Collapse
Affiliation(s)
- K Auxzilia Preethi
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Sushmaa Chandralekha Selvakumar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Deusdedit Tusubira
- Biochemistry Department, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India.
| |
Collapse
|
10
|
Nersisyan SA. Induction of Hypoxic Response in Caco-2 Cells Promote the Expression of Genes Involved in SARS-CoV-2 Endocytosis and Transcytosis. DOKL BIOCHEM BIOPHYS 2022; 506:206-209. [PMID: 36303053 PMCID: PMC9612616 DOI: 10.1134/s1607672922050118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/07/2022]
Abstract
In the present manuscript we analyzed the influence of hypoxic response in Caco-2 cells on the expression of genes and miRNAs involved in the mechanisms of intracellular transport of SARS-CoV-2 viral particles, especially endocytosis and transcytosis. With the use of RNA sequencing of Caco-2 cells treated with hypoxia-inducing oxyquinoline derivative, we showed two-fold increase in the expression of the main SARS-CoV-2 receptor ACE2. Expression of the non-canonical receptor TFRC was also elevated. We also observed a significant increase in the expression levels of genes from the low-density lipoprotein (LDL) receptor family, which play a crucial role in the transcytosis: LDLR, LRP1, LRP4, and LRP5. Upregulation of LDLR was coupled with the downregulation of hsa-miR-148a-3p, which can directly bind to LDLR mRNA. Thus, the hypoxic response in Caco-2 cells includes upregulation of genes involved in the mechanisms of endocytosis and transcytosis of SARS-CoV-2 viral particles.
Collapse
Affiliation(s)
- S. A. Nersisyan
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia ,Institute of Molecular Biology (IMB), National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| |
Collapse
|
11
|
Askenase PW. Exosomes provide unappreciated carrier effects that assist transfers of their miRNAs to targeted cells; I. They are 'The Elephant in the Room'. RNA Biol 2021; 18:2038-2053. [PMID: 33944671 PMCID: PMC8582996 DOI: 10.1080/15476286.2021.1885189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/23/2021] [Accepted: 01/30/2021] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EV), such as exosomes, are emerging biologic entities that mediate important newly recognized functional effects. Exosomes are intracellular endosome-originating, cell-secreted, small nano-size EV. They can transfer cargo molecules like miRNAs to act intracellularly in targeted acceptor cells, to then mediate epigenetic functional alterations. Exosomes among EV, are universal nanoparticles of life that are present across all species. Some critics mistakenly hold exosomes to concepts and standards of cells, whereas they are subcellular nanospheres that are a million times smaller, have neither nuclei nor mitochondria, are far less complex and currently cannot be studied deeply and elegantly by many and diverse technologies developed for cells over many years. There are important concerns about the seeming impossibility of biologically significant exosome transfers of very small amounts of miRNAs resulting in altered targeted cell functions. These hesitations are based on current canonical concepts developed for non-physiological application of miRNAs alone, or artificial non-quantitative genetic expression. Not considered is that the natural physiologic intercellular transit via exosomes can contribute numerous augmenting carrier effects to functional miRNA transfers. Some of these are particularly stimulated complex extracellular and intracellular physiologic processes activated in the exosome acceptor cells that can crucially influence the intracellular effects of the transferred miRNAs. These can lead to molecular chemical changes altering DNA expression for mediating functional changes of the targeted cells. Such exosome mediated molecular transfers of epigenetic functional alterations, are the most exciting and life-altering property that these nano EV bring to virtually all of biology and medicine. .Abbreviations: Ab, Antibody Ag Antigen; APC, Antigen presenting cells; CS, contact sensitivity; DC, Dendritic cells; DTH, Delayed-type hypersensitivity; EV, extracellular vesicles; EV, Extracellular vesicle; FLC, Free light chains of antibodies; GI, gastrointestinal; IP, Intraperitoneal administration; IV, intravenous administration; OMV, Outer membrane vesicles released by bacteria; PE, Phos-phatidylethanolamine; PO, oral administration.
Collapse
Affiliation(s)
- Philip W. Askenase
- Section of Rheumatology, Allergy and Clinical Immunology Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Cai M, Chai S, Xiong T, Wei J, Mao W, Zhu Y, Li X, Wei W, Dai X, Yang B, Liu W, Shu B, Wang M, Lu T, Cai Y, Zheng Z, Mei Z, Zhou Y, Yang J, Zhao J, Shen L, Ho JWK, Chen J, Xiong N. Aberrant Expression of Circulating MicroRNA Leads to the Dysregulation of Alpha-Synuclein and Other Pathogenic Genes in Parkinson's Disease. Front Cell Dev Biol 2021; 9:695007. [PMID: 34497805 PMCID: PMC8419519 DOI: 10.3389/fcell.2021.695007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
A group of circulating microRNAs (miRNAs) have been implicated in the pathogenesis of Parkinson’s disease. However, a comprehensive study of the interactions between pathogenic miRNAs and their downstream Parkinson’s disease (PD)-related target genes has not been performed. Here, we identified the miRNA expression profiles in the plasma and circulating exosomes of Parkinson’s disease patients using next-generation RNA sequencing. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses showed that the miRNA target genes were enriched in axon guidance, neurotrophin signaling, cellular senescence, and the Transforming growth factor-β (TGF-β), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) and mechanistic target of rapamycin (mTOR) signaling pathways. Furthermore, a group of aberrantly expressed miRNAs were selected and further validated in individual patient plasma, human neural stem cells (NSCs) and a rat model of PD. More importantly, the full scope of the regulatory network between these miRNAs and their PD-related gene targets in human neural stem cells was examined, and the findings revealed a similar but still varied downstream regulatory cascade involving many known PD-associated genes. Additionally, miR-23b-3p was identified as a novel direct regulator of alpha-synuclein, which is possibly the key component in PD. Our current study, for the first time, provides a glimpse into the regulatory network of pathogenic miRNAs and their PD-related gene targets in PD. Moreover, these PD-associated miRNAs may serve as biomarkers and novel therapeutic targets for PD.
Collapse
Affiliation(s)
- Meng Cai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,iRegene Therapeutics, Wuhan, China
| | - Songshan Chai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tao Xiong
- Department of Neurology, Fifth Hospital in Wuhan, Wuhan, China
| | - Jun Wei
- iRegene Therapeutics, Wuhan, China
| | | | | | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Dai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bangkun Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bing Shu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengyang Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Taojunjin Lu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuankun Cai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhixin Zheng
- The Second Clinical College of Wuhan University, Wuhan, China
| | - Zhimin Mei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yixuan Zhou
- The Second Clinical College of Wuhan University, Wuhan, China
| | - Jingyi Yang
- The Second Clinical College of Wuhan University, Wuhan, China
| | - Jingwei Zhao
- The Second Clinical College of Wuhan University, Wuhan, China
| | - Lei Shen
- The Second Clinical College of Wuhan University, Wuhan, China
| | - Joshua Wing Kei Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nanxiang Xiong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Nowak N, Yamanouchi M, Satake E. The Nephroprotective Properties of Extracellular Vesicles in Experimental Models of Chronic Kidney Disease: a Systematic Review. Stem Cell Rev Rep 2021; 18:902-932. [PMID: 34110587 PMCID: PMC8942930 DOI: 10.1007/s12015-021-10189-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 01/14/2023]
Abstract
Extracellular vesicle (EV)-based therapy was hypothesized as a promising regenerative approach which has led to intensive research of EVs in various pathologies. In this study, we performed a comprehensive systematic review of the current experimental evidence regarding the protective properties of EVs in chronic kidney disease (CKD). We evaluated the EV-based experiments, EV characteristics, and effector molecules with their involvement in CKD pathways. Including all animal records with available creatinine or urea data, we performed a stratified univariable meta-analysis to assess the determinants of EV-based therapy effectiveness. We identified 35 interventional studies that assessed nephroprotective role of EVs and catalogued them according to their involvement in CKD mechanism. Systematic assessment of these studies suggested that EVs had consistently improved glomerulosclerosis, interstitial fibrosis, and cell damage, among different CKD models. Moreover, EV-based therapy reduced the progression of renal decline in CKD. The stratified analyses showed that the disease model, administered dose, and time of therapeutic intervention were potential predictors of therapeutic efficacy. Together, EV therapy is a promising approach for CKD progression in experimental studies. Further standardisation of EV-methods, continuous improvement of the study quality, and better understanding of the determinants of EV effectiveness will facilitate preclinical research, and may help development of clinical trials in people with CKD.
Collapse
Affiliation(s)
- Natalia Nowak
- Faculty of Medicine, Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland.
| | - Masayuki Yamanouchi
- Department of Nephrology and Laboratory Medicine Faculty of Medicine Institute of Medical, Pharmaceutical and Health Sciences Graduate School of Medical Sciences, Kanazawa University, Toranomon Hospital, Nephrology Center, Tokyo, Japan
| | - Eiichiro Satake
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, MA, Boston, USA
| |
Collapse
|
14
|
Nersisyan S, Galatenko A, Chekova M, Tonevitsky A. Hypoxia-Induced miR-148a Downregulation Contributes to Poor Survival in Colorectal Cancer. Front Genet 2021; 12:662468. [PMID: 34135940 PMCID: PMC8202010 DOI: 10.3389/fgene.2021.662468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/21/2021] [Indexed: 11/25/2022] Open
Abstract
Hypoxia is an extensively investigated condition due to its contribution to various pathophysiological processes including cancer progression and metastasis formation. MicroRNAs (miRNAs) are well-known post-transcriptional gene expression regulators. However, their contribution to molecular response to hypoxia is highly dependent on cell/tissue types and causes of hypoxia. One of the most important examples is colorectal cancer, where no consensus on hypoxia-regulated miRNAs has been reached so far. In this work, we applied integrated mRNA and small RNA sequencing, followed by bioinformatics analysis, to study the landscape of hypoxia-induced miRNA and mRNA expression alterations in human colorectal cancer cell lines (HT-29 and Caco-2). A hypoxic microenvironment was chemically modeled using two different treatments: cobalt(II) chloride and oxyquinoline. Only one miRNA, hsa-miR-210-3p, was upregulated in all experimental conditions, while there were nine differentially expressed miRNAs under both treatments within the same cell line. Further bioinformatics analysis revealed a complex hypoxia-induced regulatory network: hypoxic downregulation of hsa-miR-148a-3p led to the upregulation of its two target genes, ITGA5 and PRNP, which was shown to be a factor contributing to tumor progression and poor survival in colorectal cancer patients.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Alexei Galatenko
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia.,Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | - Milena Chekova
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | | |
Collapse
|
15
|
Bryzgunova O, Konoshenko M, Zaporozhchenko I, Yakovlev A, Laktionov P. Isolation of Cell-Free miRNA from Biological Fluids: Influencing Factors and Methods. Diagnostics (Basel) 2021; 11:865. [PMID: 34064927 PMCID: PMC8151063 DOI: 10.3390/diagnostics11050865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
A vast wealth of recent research has seen attempts of using microRNA (miRNA) found in biological fluids in clinical research and medicine. One of the reasons behind this trend is the apparent their high stability of cell-free miRNA conferred by small size and packaging in supramolecular complexes. However, researchers in both basic and clinical settings often face the problem of selecting adequate methods to extract appropriate quality miRNA preparations for use in specific downstream analysis pipelines. This review outlines the variety of different methods of miRNA isolation from biofluids and examines the key determinants of their efficiency, including, but not limited to, the structural properties of miRNA and factors defining their stability in the extracellular environment.
Collapse
Affiliation(s)
- Olga Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Maria Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Ivan Zaporozhchenko
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| | - Alexey Yakovlev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| |
Collapse
|
16
|
Nersisyan S, Galatenko A, Galatenko V, Shkurnikov M, Tonevitsky A. miRGTF-net: Integrative miRNA-gene-TF network analysis reveals key drivers of breast cancer recurrence. PLoS One 2021; 16:e0249424. [PMID: 33852600 PMCID: PMC8046230 DOI: 10.1371/journal.pone.0249424] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Analysis of regulatory networks is a powerful framework for identification and quantification of intracellular interactions. We introduce miRGTF-net, a novel tool for construction of miRNA-gene-TF networks. We consider multiple transcriptional and post-transcriptional interaction types, including regulation of gene and miRNA expression by transcription factors, gene silencing by miRNAs, and co-expression of host genes with their intronic miRNAs. The underlying algorithm uses information on experimentally validated interactions as well as integrative miRNA/mRNA expression profiles in a given set of samples. The latter ensures simultaneous tissue-specificity and biological validity of interactions. We applied miRGTF-net to paired miRNA/mRNA-sequencing data of breast cancer samples from The Cancer Genome Atlas (TCGA). Together with topological analysis of the constructed network we showed that considered players can form reliable prognostic gene signatures for ER-positive breast cancer. A number of signatures demonstrated remarkably high accuracy on transcriptomic data obtained by both microarrays and RNA sequencing from several independent patient cohorts. Furthermore, an essential part of prognostic genes were identified as direct targets of transcription factor E2F1. The putative interplay between estrogen receptor alpha and E2F1 was suggested as a potential recurrence factor in patients treated with tamoxifen. Source codes of miRGTF-net are available at GitHub (https://github.com/s-a-nersisyan/miRGTF-net).
Collapse
Affiliation(s)
- Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- * E-mail:
| | - Alexei Galatenko
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
- Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
| | - Vladimir Galatenko
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim Shkurnikov
- P.A. Hertsen Moscow Oncology Research Center, Branch of National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | | |
Collapse
|
17
|
Santos D, Remans S, Van den Brande S, Vanden Broeck J. RNAs on the Go: Extracellular Transfer in Insects with Promising Prospects for Pest Management. PLANTS (BASEL, SWITZERLAND) 2021; 10:484. [PMID: 33806650 PMCID: PMC8001424 DOI: 10.3390/plants10030484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/16/2023]
Abstract
RNA-mediated pathways form an important regulatory layer of myriad biological processes. In the last decade, the potential of RNA molecules to contribute to the control of agricultural pests has not been disregarded, specifically via the RNA interference (RNAi) mechanism. In fact, several proofs-of-concept have been made in this scope. Furthermore, a novel research field regarding extracellular RNAs and RNA-based intercellular/interorganismal communication is booming. In this article, we review key discoveries concerning extracellular RNAs in insects, insect RNA-based cell-to-cell communication, and plant-insect transfer of RNA. In addition, we overview the molecular mechanisms implicated in this form of communication and discuss future biotechnological prospects, namely from the insect pest-control perspective.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (S.R.); (S.V.d.B.); (J.V.B.)
| | | | | | | |
Collapse
|
18
|
Extracellular miRNAs and Cell-Cell Communication: Problems and Prospects. Trends Biochem Sci 2021; 46:640-651. [PMID: 33610425 DOI: 10.1016/j.tibs.2021.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022]
Abstract
miRNAs are short RNA molecules regulating multiple cellular processes through post-transcriptional gene silencing. Over the past decade, miRNAs have been found in the extracellular space and have been consistently shown to mediate functional communication between cells. While it remains widely accepted that miRNA transfer between cells occurs via extracellular vesicles (EVs), multiple other carriers of cell-free miRNA have been described. In addition, some studies have demonstrated that both miRNAs and their binding partners, Argonaute proteins, remain hardly detectable in common isolates of EVs. In this Opinion article, we summarize the state-of-the-art mechanisms of miRNA sorting and secretion, discuss methodological challenges associated with extracellular miRNA research, and suggest experimental steps to resolve current inconsistencies in the field of miRNA-mediated cell-cell communication.
Collapse
|
19
|
Nersisyan SA, Galatenko AV, Maltseva DV, Ushkaryov Y, Tonevitsky AG. Interrelation between miRNA and mRNA expression in HT-29 line cells under hypoxia. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoxia accompanies various pathophysiological processes, including progression of tumors and metastasis. One of the mechanisms of molecular response of cells to hypoxia implies recruitment of specific miRNAs that regulate the expression of their target genes. This study aimed to evaluate the hypoxia-induced change in expression of miRNAs and their target genes in the HT-29 human colorectal adenocarcinoma cell line with the help of integrated miRNA and mRNA sequencing. To simulate hypoxia, the cells were treated with cobalt (II) chloride. We registered a significant change in expression of sixteen human miRNAs. Six of them (hsa-miR-18a-5p, hsa-miR-22-3p, hsa-miR-27a-5p, hsa-miR-182-5p, hsa-miR-215 -5p, hsa-miR-425-5p) had a significant proportion of target genes that had the expression changing in the opposite direction. Based on the bioinformatic analysis of interactions between differentially expressed transcription factors and miRNAs, we built a possible regulatory network with its main hubs being HIF-1α, p65, с-Myc, and Egr1 (encoded by the HIF1A, RELA, MYC and EGR1 genes).
Collapse
Affiliation(s)
- SA Nersisyan
- National Research University Higher School of Economics, Moscow, Russia
| | - AV Galatenko
- Lomonosov Moscow State University, Moscow, Russia; Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
| | - DV Maltseva
- National Research University Higher School of Economics, Moscow, Russia; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - YuA Ushkaryov
- National Research University Higher School of Economics, Moscow, Russia
| | - AG Tonevitsky
- National Research University Higher School of Economics, Moscow, Russia; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
20
|
Wu J, Shen Z. Exosomal miRNAs as biomarkers for diagnostic and prognostic in lung cancer. Cancer Med 2020; 9:6909-6922. [PMID: 32779402 PMCID: PMC7541138 DOI: 10.1002/cam4.3379] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022] Open
Abstract
More and more studies report that exosomes released by various cells can serve as a medium for information exchange between different cells. Through a deep understanding of the physical and chemical properties of exosomes, the researchers revealed a more precise molecular mechanism of its participation in the process of intercellular communication. In particular, microRNA (miRNA) is found inside exosomes, as well as long noncoding RNA (lncRNA). Extensive evidence indicates that exosomal miRNAs participates in the occurrence and development of lung cancer and plays a variety of roles. Therefore, the release of RNA‐containing exosomes in many different kinds of body fluids has caused widespread interest among researchers. In this review, we report evidence from human studies involving miRNAs and other ncRNAs in exosomes associated with lung cancer as diagnostic and prognostic markers. Currently, there is a small amount of evidence that exosomal miRNAs can be used as early diagnosis and prognostic markers for lung cancer, and their exact role in lung cancer patients still needs further study.
Collapse
Affiliation(s)
- Jing Wu
- Department of Clinical Laboratory, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, P.R. China
| | - Zuojun Shen
- Department of Clinical Laboratory, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, P.R. China.,Department of Clinical Laboratory, Division of Life Sciences and Medicine, The First Affliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P.R. China
| |
Collapse
|
21
|
Nersisyan S, Shkurnikov M, Turchinovich A, Knyazev E, Tonevitsky A. Integrative analysis of miRNA and mRNA sequencing data reveals potential regulatory mechanisms of ACE2 and TMPRSS2. PLoS One 2020; 15:e0235987. [PMID: 32726325 PMCID: PMC7390267 DOI: 10.1371/journal.pone.0235987] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
Development of novel approaches for regulating the expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) is becoming increasingly important within the context of the ongoing COVID-19 pandemic since these enzymes play a crucial role in cell infection. In this work we searched for putative ACE2 and TMPRSS2 expression regulation networks mediated by various miRNA isoforms (isomiR) across different human organs using publicly available paired miRNA/mRNA-sequencing data from The Cancer Genome Atlas (TCGA) project. As a result, we identified several miRNA families targeting ACE2 and TMPRSS2 genes in multiple tissues. In particular, we found that lysine-specific demethylase 5B (JARID1B), encoded by the KDM5B gene, can indirectly affect ACE2 / TMPRSS2 expression by repressing transcription of hsa-let-7e / hsa-mir-125a and hsa-mir-141 / hsa-miR-200 miRNA families which are targeting these genes.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Faculty of Biology and Biotechnology, Higher School of Economics, Moscow, Russia
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim Shkurnikov
- P.A. Hertsen Moscow Oncology Research Center, Branch of National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - Evgeny Knyazev
- Faculty of Biology and Biotechnology, Higher School of Economics, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, Higher School of Economics, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
22
|
Chen S, Shiesh SC, Lee GB, Chen C. Two-step magnetic bead-based (2MBB) techniques for immunocapture of extracellular vesicles and quantification of microRNAs for cardiovascular diseases: A pilot study. PLoS One 2020; 15:e0229610. [PMID: 32101583 PMCID: PMC7043767 DOI: 10.1371/journal.pone.0229610] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have attracted increasing attention because of their potential roles in various biological processes and medical applications. However, isolation of EVs is technically challenging mainly due to their small and heterogeneous size and contaminants that are often co-isolated. We have thus designed a two-step magnetic bead-based (2MBB) method for isolation a subset of EVs as well as their microRNAs from samples of a limited amount. The process involves utilizing magnetic beads coated with capture molecules that recognize EV surface markers, such as CD63. Captured EVs could be eluted from beads or lyzed directly for subsequent analysis. In this study, we used a second set of magnetic beads coated with complementary oligonucleotides to isolate EV-associated microRNAs (EV-miRNAs). The efficiencies of 2MBB processes were assessed by reverse transcription-polymerase chain reaction (RT-PCR) with spiked-in exogenous cel-miR-238 molecules. Experimental results demonstrated the high efficiency in EV enrichment (74 ± 7%, n = 4) and miRNA extraction (91 ± 4%, n = 4). Transmission electron micrographs (TEM) and nanoparticle tracking analysis (NTA) show that captured EVs enriched by 2MBB method could be released and achieved a higher purity than the differential ultracentrifugation (DUC) method (p < 0.001, n = 3). As a pilot study, EV-miR126-3p and total circulating cell-free miR126-3p (cf-miR126-3p) in eight clinical plasma samples were measured and compared with the level of protein markers. Compared to cf-miR126-3p, a significant increase in correlations between EV-miR126-3p and cardiac troponin I (cTnI) and N-terminal propeptide of B-type natriuretic peptide (NT-proBNP) was detected. Furthermore, EV-miR126-3p levels in plasma samples from healthy volunteers (n = 18) and high-risk cardiovascular disease (CVD) patients (n = 10) were significantly different (p = 0.006), suggesting EV-miR126 may be a potential biomarker for cardiovascular diseases. 2MBB technique is easy, versatile, and provides an efficient means for enriching EVs and EV-associated nucleic acid molecules.
Collapse
Affiliation(s)
- Shi Chen
- Institution of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Chu Shiesh
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan City, Taiwan
| | - Gwo-Bin Lee
- Institution of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Institution of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chihchen Chen
- Institution of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
23
|
Xue VW, Wong CSC, Cho WCS. Early detection and monitoring of cancer in liquid biopsy: advances and challenges. Expert Rev Mol Diagn 2019; 19:273-276. [DOI: 10.1080/14737159.2019.1583104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Vivian Weiwen Xue
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Cesar Sze Chuen Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | | |
Collapse
|
24
|
The presence of extracellular microRNAs in the media of cultured Drosophila cells. Sci Rep 2018; 8:17312. [PMID: 30470777 PMCID: PMC6251921 DOI: 10.1038/s41598-018-35531-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/07/2018] [Indexed: 12/26/2022] Open
Abstract
While regulatory RNA pathways, such as RNAi, have commonly been described at an intracellular level, studies investigating extracellular RNA species in insects are lacking. In the present study, we demonstrate the presence of extracellular microRNAs (miRNAs) in the cell-free conditioned media of two Drosophila cell lines. More specifically, by means of quantitative real-time PCR (qRT-PCR), we analysed the presence of twelve miRNAs in extracellular vesicles (EVs) and in extracellular Argonaute-1 containing immunoprecipitates, obtained from the cell-free conditioned media of S2 and Cl.8 cell cultures. Next-generation RNA-sequencing data confirmed our qRT-PCR results and provided evidence for selective miRNA secretion in EVs. To our knowledge, this is the first time that miRNAs have been identified in the extracellular medium of cultured cells derived from insects, the most speciose group of animals.
Collapse
|
25
|
Ahmed N, De Graaf JF, Ahmed N, Foss DV, Delcorde J, Schultz PG, Pezacki JP. Visualization of the Delivery and Release of Small RNAs Using Genetic Code Expansion and Unnatural RNA-Binding Proteins. Bioconjug Chem 2018; 29:3982-3986. [DOI: 10.1021/acs.bioconjchem.8b00649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Noreen Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - Joanna Fréderique De Graaf
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - Dana V. Foss
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Julie Delcorde
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Peter G. Schultz
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
26
|
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia and is associated with pronounced morbidity and mortality. Its prevalence, expected to further increase for the forthcoming years, and associated frequent hospitalizations turn AF into a major health problem. Structural and electrical atrial remodelling underlie the substrate for AF, but the exact mechanisms driving this remodelling remain incompletely understood. Recent studies have shown that microRNAs (miRNA), short non-coding RNAs that regulate gene expression, may be involved in the pathophysiology of AF. MiRNAs have been implicated in AF-induced ion channel remodelling and fibrosis. MiRNAs could therefore provide insight into AF pathophysiology or become novel targets for therapy with miRNA mimics or anti-miRNAs. Moreover, circulating miRNAs have been suggested as a new class of diagnostic and prognostic biomarkers of AF. However, the origin and function of miRNAs in tissue and plasma frequently remain unknown and studies investigating the role of miRNAs in AF vary in design and focus and even present contradicting results. Here, we provide a systematic review of the available clinical and functional studies investigating the tissue and plasma miRNAs in AF and will thereafter discuss the potential of miRNAs as biomarkers or novel therapeutic targets in AF.
Collapse
|
27
|
Oeyen E, Van Mol K, Baggerman G, Willems H, Boonen K, Rolfo C, Pauwels P, Jacobs A, Schildermans K, Cho WC, Mertens I. Ultrafiltration and size exclusion chromatography combined with asymmetrical-flow field-flow fractionation for the isolation and characterisation of extracellular vesicles from urine. J Extracell Vesicles 2018; 7:1490143. [PMID: 29988836 PMCID: PMC6032024 DOI: 10.1080/20013078.2018.1490143] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) have a great potential in clinical applications. However, their isolation from different bodily fluids and their characterisation are currently not optimal or standardised. Here, we report the results of examining the performance of ultrafiltration combined with size exclusion chromatography (UF-SEC) to isolate EVs from urine. The results reveal that UF-SEC is an efficient method and provides high purity. Furthermore, we introduce asymmetrical-flow field-flow fractionation coupled with a UV detector and multi-angle light-scattering detector (AF4/UV-MALS) as a characterisation method and compare it with current methods. We demonstrate that AF4/UV-MALS is a straightforward and reproducible method for determining size, amount and purity of isolated urinary EVs.
Collapse
Affiliation(s)
- Eline Oeyen
- Sustainable Health Department, Flemish Institute for Technological Research (VITO), Mol, Belgium.,Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium
| | | | - Geert Baggerman
- Sustainable Health Department, Flemish Institute for Technological Research (VITO), Mol, Belgium.,Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium
| | - Hanny Willems
- Sustainable Health Department, Flemish Institute for Technological Research (VITO), Mol, Belgium.,Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium
| | - Kurt Boonen
- Sustainable Health Department, Flemish Institute for Technological Research (VITO), Mol, Belgium.,Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium
| | - Christian Rolfo
- Phase I - Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) & Edegem & Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Patrick Pauwels
- Pathological Anatomy Department, Antwerp University Hospital (UZA), Edegem, Belgium
| | - An Jacobs
- Sustainable Health Department, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Inge Mertens
- Sustainable Health Department, Flemish Institute for Technological Research (VITO), Mol, Belgium.,Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
28
|
Fang S, Gao M, Xiong S, Chen Q, Zhang H. Expression of serum Hsa-miR-93 in uterine cancer and its clinical significance. Oncol Lett 2018; 15:9896-9900. [PMID: 29844841 DOI: 10.3892/ol.2018.8553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/22/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of the study was to investigate the differential expression of micro-ribonucleic acid (miRNA)-93 in serum of patients with uterine cancer, and to explore the clinical significance. A total of 176 patients with uterine cancer who received surgery from May, 2009 to January, 2011 in the Department of Oncology of Hubei Cancer Hospital were selected. At the same time, 100 healthy individuals selected from the Physical Examination Center of Hubei Cancer Hospital comprised the control group. Mean age of patients was 55±11 years, and of the healthy individuals in the control group was 53±9 years. Blood was extracted from each participant to prepare serum samples. Change in the expression of serum miRNA-93 was detected by reverse transcription-polymerase chain reaction (RT-PCR), and the correlation between the expression of miRNA-93 and clinicopathological features of uterine cancer was analyzed. Expression level of miRNA-93 in serum of patients with uterine cancer was significantly lower than that in the healthy controls (P<0.05). Expression level of miRNA-93 was significantly correlated with pathological staging and lymph node metastasis (P<0.05). Receiver operating characteristic curve analysis showed that the area under curve was 0.781 and 95% confidence interval was 0.724-0.842. Survival rate of the high miRNA-93 expression group was significantly higher than that in the low miRNA-93 expression group (P=0.036). These results indicate that change in the expression of miRNA-93 is related to the occurrence of uterine cancer, and its decreased expression level suggests tumorigenesis.
Collapse
Affiliation(s)
- Shengquan Fang
- Department of Gynecologic Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| | - Min Gao
- Department of Radiochemotherapy Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shilu Xiong
- Department of Gynecologic Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| | - Qian Chen
- Department of Gynecologic Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| | - Huifeng Zhang
- Department of Gynecologic Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
29
|
Expression of microRNA Genes MIR221, MIR222, and MIR181B1 Increases during Induction of Inflammation in the Endothelial Barrier Model. Bull Exp Biol Med 2018; 164:749-752. [PMID: 29666964 DOI: 10.1007/s10517-018-4072-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 12/11/2022]
Abstract
We studied expression profile of microRNA and their target genes in human umbilical vein endothelial cells (HUVEC) during proinflammatory activation with TNFα. TNFα-induced activation of HUVEC was accompanied by a decrease in the expression of CDKN1B, HIST1H3D, and OIP5 genes that are the common target genes for mature microRNA encoded by MIR221, MIR222, and MIR181B1 genes, whose expression increases in activated cells. Proteins encoded by HIST1H3D and OIP5 genes are associated with chromatin compaction and cell cycle. Our results suggest that fetal endothelial microRNA can appear in the maternal blood during various pathological states, e.g., under conditions of preeclampsia.
Collapse
|
30
|
Chen L, Yang J, Lü J, Cao S, Zhao Q, Yu Z. Identification of aberrant circulating miRNAs in Parkinson's disease plasma samples. Brain Behav 2018; 8:e00941. [PMID: 29670823 PMCID: PMC5893342 DOI: 10.1002/brb3.941] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE To detect the aberrant expression of circulating miRNAs and explore the potential early diagnostic biomarkers in patients with Parkinson's disease (PD). METHODS Plasma samples were collected from 25 treatment-naïve PD-diagnosed patients and 25 healthy controls followed by a real-time PCR-based miRNA screening analysis of neuron disease-related miRNAs. RESULTS A subset of miRNAs with aberrant expression levels in the plasma of PD-diagnosed patients were identified including upregulation of miR-27a and downregulation of let-7a, let-7f, miR-142-3p, and miR-222 with the AUC values more than 0.8 derived from the receiver operating characteristic curves. CONCLUSIONS The high sensitivity and specificity of the circulating miRNAs may enable early diagnosis of PD. The study provides a group of novel miRNA candidates for detecting PD.
Collapse
Affiliation(s)
- Lei Chen
- Department of NeurologyTianjin Huan Hu Hospital Jinnan District, Tianjin China.,Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases Tianjin China
| | - Junxiu Yang
- Department of Neurology Hospital of Integrated Traditional and Western Medicine Cangzhou China
| | - Jinhui Lü
- Research Center for Translational Medicine East Hospital Tongji University School of Medicine Shanghai China
| | - Shanshan Cao
- Department of NeurologyTianjin Huan Hu Hospital Jinnan District, Tianjin China.,Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases Tianjin China
| | - Qian Zhao
- Research Center for Translational Medicine East Hospital Tongji University School of Medicine Shanghai China
| | - Zuoren Yu
- Research Center for Translational Medicine East Hospital Tongji University School of Medicine Shanghai China
| |
Collapse
|
31
|
Sartorius K, Sartorius B, Kramvis A, Singh E, Turchinovich A, Burwinkel B, Madiba T, Winkler CA. Circulating microRNA's as a diagnostic tool for hepatocellular carcinoma in a hyper endemic HIV setting, KwaZulu-Natal, South Africa: a case control study protocol focusing on viral etiology. BMC Cancer 2017; 17:894. [PMID: 29282036 PMCID: PMC5745691 DOI: 10.1186/s12885-017-3915-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/14/2017] [Indexed: 12/15/2022] Open
Abstract
Background A wide range of studies has investigated the diagnostic proficiency of extracellular microRNAs (miRNAs) in hepatocellular cancer (HCC). HCC is expected to increase in Sub-Saharan Africa (SSA), due to endemic levels of viral infection (HBV/HIV), ageing and changing lifestyles. This unique aetiological background provides an opportunity for investigating potentially novel circulating miRNAs as biomarkers for HCC in a prospective study in South Africa. Methods This study will recruit HCC patients from two South African cancer hospitals, situated in Durban and Pietermaritzburg in the province of KwaZulu-Natal. These cases will include both HBV mono-infected and HBV/HIV co-infected HCC cases. The control group will consist of two (2) age and sex-matched healthy population controls per HCC case randomly selected from a Durban based laboratory. The controls will exclude patients if they have any evidence of chronic liver disease. A standardised reporting approach will be adopted to detect, quantify and normalize the level of circulating miRNAs in the blood sera of HCC cases and their controls. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) will be employed to quantity extracellular miRNAs. Differences in concentration of relevant miRNA by case/control status will be assessed using the Wilcoxon rank-sum (Mann-Whitney U) test. Adjustment for multiple testing (Bonferroni correction), receiver operating curves (ROC) and optimal breakpoint analyses will be employed to identify potential thresholds for the differentiation of miRNA levels of HCC cases and their controls. Discussion Although there is a growing base of literature regarding the role of circulating miRNAs as biomarkers, this promising field remains a ‘work in progress’. The aetiology of HBV infection in HCC is well understood, as well as it’s role in miRNA deregulation, however, the mediating role of HIV infection is unknown. HCC incidence in SSA, including South Africa, is expected to increase significantly in the next decade. A combination of factors, therefore, offers a unique opportunity to identify candidate circulating miRNAs as potential biomarkers for HBV/HIV infected HCC. Electronic supplementary material The online version of this article (10.1186/s12885-017-3915-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- K Sartorius
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, 4041, South Africa.,Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg, South Africa.,UKZN Gastrointestinal Cancer Research Centre (GICRC), Durban, South Africa
| | - B Sartorius
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, 4041, South Africa. .,UKZN Gastrointestinal Cancer Research Centre (GICRC), Durban, South Africa.
| | - A Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - E Singh
- South African National Cancer Registry, National Health Laboratory Service, Johannesburg, South Africa
| | - A Turchinovich
- Molecular Epidemiology Group, German Cancer Research Centre, Heidelberg, Germany.,SciBerg e.Kfm, Mannheim, Germany
| | - B Burwinkel
- Molecular Epidemiology Group, German Cancer Research Centre, Heidelberg, Germany
| | - T Madiba
- UKZN Gastrointestinal Cancer Research Centre (GICRC), Durban, South Africa
| | - C A Winkler
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc. Frederick Nat. Lab. for Cancer Research, Frederick, MD, USA
| |
Collapse
|
32
|
Saeedi Borujeni MJ, Esfandiary E, Taheripak G, Codoñer‐Franch P, Alonso‐Iglesias E, Mirzaei H. Molecular aspects of diabetes mellitus: Resistin, microRNA, and exosome. J Cell Biochem 2017; 119:1257-1272. [PMID: 28688216 DOI: 10.1002/jcb.26271] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/07/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Mohammad Javad Saeedi Borujeni
- Department of Anatomical SCIENCES and Molecular BiologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Ebrahim Esfandiary
- Department of Anatomical SCIENCES and Molecular BiologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Gholamreza Taheripak
- Faculty of MedicineDepartment of BiochemistryIran University of Medical SciencesTehranIran
| | - Pilar Codoñer‐Franch
- Department of PediatricsObstetrics and GynecologyUniversity of ValenciaValenciaSpain
| | | | - Hamed Mirzaei
- Department of Medical BiotechnologySchool of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
33
|
Chan SY, Snow JW. Formidable challenges to the notion of biologically important roles for dietary small RNAs in ingesting mammals. GENES AND NUTRITION 2017; 12:13. [PMID: 29308096 PMCID: PMC5753850 DOI: 10.1186/s12263-017-0561-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
The notion of uptake of active diet-derived small RNAs (sRNAs) in recipient organisms could have significant implications for our understanding of oral therapeutics and nutrition, for the safe use of RNA interference (RNAi) in agricultural biotechnology, and for ecological relationships. Yet, the transfer and subsequent regulation of gene activity by diet-derived sRNAs in ingesting mammals are still heavily debated. Here, we synthesize current information based on multiple independent studies of mammals, invertebrates, and plants. Rigorous assessment of these data emphasize that uptake of active dietary sRNAs is neither a robust nor a prevalent mechanism to maintain steady-state levels in higher organisms. While disagreement still continues regarding whether such transfer may occur in specialized contexts, concerns about technical difficulties and a lack of consensus on appropriate methods have led to questions regarding the reproducibility and biologic significance of some seemingly positive results. For any continuing investigations, concerted efforts should be made to establish a strong mechanistic basis for potential effects of dietary sRNAs and to agree on methodological guidelines for realizing such proof. Such processes would ensure proper interpretation of studies aiming to prove dietary sRNA activity in mammals and inform potential for application in therapeutics and agriculture.
Collapse
Affiliation(s)
- Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, BST 1704.2, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Jonathan W Snow
- Department of Biology, Barnard College, New York, NY 10027 USA
| |
Collapse
|
34
|
Malla B, Zaugg K, Vassella E, Aebersold DM, Dal Pra A. Exosomes and Exosomal MicroRNAs in Prostate Cancer Radiation Therapy. Int J Radiat Oncol Biol Phys 2017; 98:982-995. [PMID: 28721912 DOI: 10.1016/j.ijrobp.2017.03.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022]
Abstract
Despite current risk stratification systems using traditional clinicopathologic factors, many localized and locally advanced prostate cancers fail radical treatment (ie, radical prostatectomy, radiation therapy with or without androgen deprivation therapy). Therefore, a pressing need exists for enhanced methods of disease stratification through novel prognostic and predictive tools that can reliably be applied in clinical practice. Exosomes are 50- to 150-nm small vesicles released by cancer cells that reflect the genetic and nongenetic materials of parent cancer cells. Cancer cells can contain distinct sets of microRNA profiles, the expression of which can change owing to stress such as radiation therapy. These alterations or distinctions in contents allow exosomes to be used as prognostic and/or predictive biomarkers and to monitor the treatment response. Additionally, microRNAs have been shown to influence multiple processes in prostate tumorigenesis, including cell proliferation, induction of apoptosis, migration, oncogene inhibition, and radioresistance. Thus, comparative exosomal microRNA profiling at different levels could help portray tumor aggressiveness and response to radiation therapy. Although technical challenges persist in exosome isolation and characterization, recent improvements in microRNA profiling have evolved toward in-depth analyses of the exosomal cargo and its functions. We have reviewed the role of exosomes and exosomal microRNAs in biologic processes of prostate cancer progression and radiation therapy response, with a particular focus on the development of clinical assays for treatment personalization.
Collapse
Affiliation(s)
- Bijaya Malla
- Department of Radiation Oncology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Kathrin Zaugg
- Department of Radiation Oncology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Erik Vassella
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Daniel M Aebersold
- Department of Radiation Oncology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Alan Dal Pra
- Department of Radiation Oncology, Bern University Hospital, Inselspital, Bern, Switzerland.
| |
Collapse
|
35
|
Prattichizzo F, Micolucci L, Cricca M, De Carolis S, Mensà E, Ceriello A, Procopio AD, Bonafè M, Olivieri F. Exosome-based immunomodulation during aging: A nano-perspective on inflamm-aging. Mech Ageing Dev 2017; 168:44-53. [PMID: 28259747 DOI: 10.1016/j.mad.2017.02.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/23/2017] [Accepted: 02/25/2017] [Indexed: 12/19/2022]
Abstract
Exosomes are nanovesicles formed by inward budding of endosomal membranes. They exert complex immunomodulatory effects on target cells, acting both as antigen-presenting vesicles and as shuttles for packets of information such as proteins, coding and non-coding RNA, and nuclear and mitochondrial DNA fragments. Albeit different, all such functions seem to be encompassed in the adaptive mechanism mediating the complex interactions of the organism with a variety of stressors, providing both for defense and for the evolution of symbiotic relationships with others organisms (gut microbiota, bacteria, and viruses). Intriguingly, the newly deciphered human virome and exosome biogenesis seem to share some physical-chemical characteristics and molecular mechanisms. Exosomes are involved in immune system recognition of self from non-self throughout life: they are therefore ideal candidate to modulate inflamm-aging, the chronic, systemic, age-related pro-inflammatory status, which influence the development/progression of the most common age-related diseases (ARDs). Not surprisingly, recent evidence has documented exosomal alteration during aging and in association with ARDs, even though data in this field are still limited. Here, we review current knowledge on exosome-based trafficking between immune cells and self/non-self cells (i.e. the virome), sketching a nano-perspective on inflamm-aging and on the mechanisms involved in health maintenance throughout life.
Collapse
Affiliation(s)
- Francesco Prattichizzo
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS) and Centre of Biomedical Investigation on Diabetes and Associated Metabolic Disorders Network (CIBERDEM), 08036 Barcelona, Spain; Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Luigina Micolucci
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Monica Cricca
- Department of Experimental, Diagnostic, and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Sabrina De Carolis
- Department of Experimental, Diagnostic, and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Ceriello
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS) and Centre of Biomedical Investigation on Diabetes and Associated Metabolic Disorders Network (CIBERDEM), 08036 Barcelona, Spain; Department of Cardiovascular and Metabolic Diseases, IRCCS Multimedica, Sesto San Giovanni, Milan, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, National Institute INRCA-IRCCS, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic, and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Fabiola Olivieri
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS) and Centre of Biomedical Investigation on Diabetes and Associated Metabolic Disorders Network (CIBERDEM), 08036 Barcelona, Spain; Center of Clinical Pathology and Innovative Therapy, National Institute INRCA-IRCCS, Ancona, Italy.
| |
Collapse
|
36
|
Osip'yants AI, Knyazev EN, Galatenko AV, Nyushko KM, Galatenko VV, Shkurnikov MY, Alekseev BY. Changes in the Level of Circulating hsa-miR-297 and hsa-miR-19b-3p miRNA Are Associated with Generalization of Prostate Cancer. Bull Exp Biol Med 2017; 162:379-382. [PMID: 28091918 DOI: 10.1007/s10517-017-3620-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 12/30/2022]
Abstract
We performed diagnostic classification of plasma specimens from patients with non-metastatic and metastatic prostate cancer based on pairs of miRNA that have no individual diagnostic significance. Of 230 miRNA detected in plasma specimens, 3 pairs were diagnostically significant. The miRNA pair hsa-miR-19b-3p and hsa-miR-297 demonstrated highest sensitivity and specificity. Among common target genes of these miRNA, CFL2 gene associated with cell mobility was detected.
Collapse
Affiliation(s)
- A I Osip'yants
- BioClinicum Research and Development Centre, Moscow, Russia.,P.A. Herzen Moscow Oncology Research Institute, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E N Knyazev
- BioClinicum Research and Development Centre, Moscow, Russia.,P.A. Herzen Moscow Oncology Research Institute, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Galatenko
- BioClinicum Research and Development Centre, Moscow, Russia
| | - K M Nyushko
- P.A. Herzen Moscow Oncology Research Institute, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V V Galatenko
- BioClinicum Research and Development Centre, Moscow, Russia
| | - M Yu Shkurnikov
- P.A. Herzen Moscow Oncology Research Institute, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - B Ya Alekseev
- P.A. Herzen Moscow Oncology Research Institute, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
37
|
Prattichizzo F, Giuliani A, De Nigris V, Pujadas G, Ceka A, La Sala L, Genovese S, Testa R, Procopio AD, Olivieri F, Ceriello A. Extracellular microRNAs and endothelial hyperglycaemic memory: a therapeutic opportunity? Diabetes Obes Metab 2016; 18:855-67. [PMID: 27161301 PMCID: PMC5094499 DOI: 10.1111/dom.12688] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/18/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a major cause of cardiovascular (CV) disease. Several large clinical trials have shown that the risk for patients with diabetes of developing CV complications is only partially reduced by early, intensive glycaemic control and lifestyle interventions, and that such complications result from changes in complex, not fully explored networks that contribute to the maintenance of endothelial function. The accumulation of senescent cells and the low-grade, systemic, inflammatory status that accompanies aging (inflammaging) are involved in the development of endothelial dysfunction. Such phenomena are modulated by epigenetic mechanisms, including microRNAs (miRNAs). MiRNAs can modulate virtually all gene transcripts. They can be secreted by living cells and taken up in active form by recipient cells, providing a new communication tool between tissues and organs. MiRNA deregulation has been associated with the development and progression of a number of age-related diseases, including the enduring gene expression changes seen in patients with diabetes. We review recent evidence on miRNA changes in T2DM, focusing on the ability of diabetes-associated miRNAs to modulate endothelial function, inflammaging and cellular senescence. We also discuss the hypothesis that miRNA-containing extracellular vesicles (i.e. exosomes and microvesicles) could be harnessed to restore a 'physiological' signature capable of preventing or delaying the harmful systemic effects of T2DM.
Collapse
Affiliation(s)
- F Prattichizzo
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - A Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - V De Nigris
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - G Pujadas
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - A Ceka
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - L La Sala
- Department of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica, Milan, Italy
| | - S Genovese
- Department of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica, Milan, Italy
| | - R Testa
- Experimental Models in Clinical Pathology, INRCA-IRCCS National Institute, Ancona, Italy
| | - A D Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy
| | - F Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy
| | - A Ceriello
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Department of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica, Milan, Italy
| |
Collapse
|
38
|
Intracellular and extracellular microRNA: An update on localization and biological role. ACTA ACUST UNITED AC 2016; 51:33-49. [PMID: 27396686 DOI: 10.1016/j.proghi.2016.06.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022]
Abstract
MicroRNA (miRNA) is a class of small non-coding RNAs which mediate post-transcriptional gene silencing (PTGS) by sequence-specific inhibition of target mRNAs translation and/or lowering their half-lives in the cytoplasm. Together with their binding partners, Argonaute (AGO) proteins, miRNAs form cores of RNA-induced silencing complexes (RISC). Despite a substantial progress in understanding RISC structure, until recently little was known about its localization in the cell. This review is aimed to provide an overview of the emerging picture of miRNA and RISC localization and function both in the intracellular space and outside of the cell. In contrast to the common assumption that PTGS occurs in the cytoplasm, it was found to operate mainly on the membranes of the endoplasmic reticulum (ER). Besides ER membranes miRNAs were found in all main cellular compartments including nucleus, nucleolus and mitochondria where they regulate various processes including transcription, translation, alternative splicing and DNA repair. Moreover, a certain pool of miRNAs may not be associated with RISC and carry completely different functions. Finally, the discovery of cell-free miRNAs in all biological fluids suggests that miRNAs might also act as signaling molecules outside the cell, and may be utilized as biomarkers for a variety of diseases. In this review we discuss miRNA secretion mechanisms and possible pathways of cell-cell communication via miRNA-containing exosomes in vivo.
Collapse
|
39
|
Barger JF, Rahman MA, Jackson D, Acunzo M, Nana-Sinkam SP. Extracellular miRNAs as biomarkers in cancer. Food Chem Toxicol 2016; 98:66-72. [PMID: 27311798 DOI: 10.1016/j.fct.2016.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
Abstract
Cancer is the leading cause of death worldwide. Despite significant progress in the field leading to identification of molecular signatures of individual tumors and the development of targeted therapies, early cancer diagnosis remains a clinical challenge. The emerging era of personalized medicine has intensified research towards biomarkers that can be obtained via noninvasive means. The recent discovery of extracellular vesicles (EVs), nano-vesicles secreted by the cell, in circulation has stimulated interest in their clinical utility as cancer biomarkers. EVs are secreted from all types of cells and their contents reflect the physiological and pathological state of the cell. Multiple clinical trials are underway investigating the clinical potential of EV content to serve as biomarkers and therapeutics. However, much work remains to translate EV content into clinical application.
Collapse
Affiliation(s)
- Jennifer F Barger
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Mohammad A Rahman
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Devine Jackson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mario Acunzo
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - S Patrick Nana-Sinkam
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA; Division of Medical Oncology, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
40
|
Azizian A, Gruber J, Ghadimi BM, Gaedcke J. MicroRNA in rectal cancer. World J Gastrointest Oncol 2016; 8:416-426. [PMID: 27190581 PMCID: PMC4865709 DOI: 10.4251/wjgo.v8.i5.416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/01/2015] [Accepted: 03/09/2016] [Indexed: 02/05/2023] Open
Abstract
In rectal cancer, one of the most common cancers worldwide, the proper staging of the disease determines the subsequent therapy. For those with locally advanced rectal cancer, a neoadjuvant chemoradiotherapy (CRT) is recommended before any surgery. However, response to CRT ranges from complete response (responders) to complete resistance (non-responders). To date we are not able to separate in advance the first group from the second, due to the absence of a valid biomarker. Therefore all patients receive the same therapy regardless of whether they reap benefits. On the other hand almost all patients receive a surgical resection after the CRT, although a watch-and-wait procedure or an endoscopic resection might be sufficient for those who responded well to the CRT. Being highly conserved regulators of gene expression, microRNAs (miRNAs) seem to be promising candidates for biomarkers. Many studies have been analyzing the miRNAs expressed in rectal cancer tissue to determine a specific miRNA profile for the ailment. Unfortunately, there is only a small overlap of identified miRNAs between different studies, posing the question as to whether different methods or differences in tissue storage may contribute to that fact or if the results simply are not reproducible, due to unknown factors with undetected influences on miRNA expression. Other studies sought to find miRNAs which correlate to clinical parameters (tumor grade, nodal stage, metastasis, survival) and therapy response. Although several miRNAs seem to have an impact on the response to CRT or might predict nodal stage, there is still only little overlap between different studies. We here aimed to summarize the current literature on rectal cancer and miRNA expression with respect to the different relevant clinical parameters.
Collapse
|
41
|
Morton MC, Feliciano DM. Neurovesicles in Brain Development. Cell Mol Neurobiol 2016; 36:409-16. [PMID: 26993505 DOI: 10.1007/s10571-015-0297-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/29/2015] [Indexed: 12/14/2022]
Abstract
Long before the nervous system is organized into electrically active neural circuits, connectivity emerges between cells of the developing brain through extracellular signals. Extracellular vesicles that shuttle RNA, proteins, and lipids from donor cells to recipient cells are candidates for mediating connectivity in the brain. Despite the abundance of extracellular vesicles during brain development, evidence for their physiological functions is only beginning to materialize. Here, we review evidence of the existence, content, and functions of extracellular vesicles in brain development.
Collapse
Affiliation(s)
- Mary C Morton
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634-0314, USA
| | - David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634-0314, USA.
| |
Collapse
|
42
|
Vegter EL, van der Meer P, de Windt LJ, Pinto YM, Voors AA. MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail 2016; 18:457-68. [DOI: 10.1002/ejhf.495] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 11/08/2022] Open
Affiliation(s)
- Eline L. Vegter
- Department of Cardiology; University Medical Centre Groningen; Hanzeplein 1, 9713 GZ Groningen the Netherlands
| | - Peter van der Meer
- Department of Cardiology; University Medical Centre Groningen; Hanzeplein 1, 9713 GZ Groningen the Netherlands
| | - Leon J. de Windt
- Department of Cardiology; CARIM School for Cardiovascular Diseases, Maastricht University; Maastricht the Netherlands
| | - Yigal M. Pinto
- Department of Cardiology; Heart Failure Research Centre, Academic Medical Centre; Amsterdam the Netherlands
| | - Adriaan A. Voors
- Department of Cardiology; University Medical Centre Groningen; Hanzeplein 1, 9713 GZ Groningen the Netherlands
| |
Collapse
|
43
|
MicroRNAs in the Cholangiopathies: Pathogenesis, Diagnosis, and Treatment. J Clin Med 2015; 4:1688-712. [PMID: 26343736 PMCID: PMC4600153 DOI: 10.3390/jcm4091688] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 12/23/2022] Open
Abstract
The cholangiopathies are a group of liver diseases resulting from different etiologies but with the cholangiocyte as the primary target. As a group, the cholangiopathies result in significant morbidity and mortality and represent one of the main indications for liver transplant in both children and adults. Contributing to this situation is the absence of a thorough understanding of their pathogenesis and a lack of adequate diagnostic and prognostic biomarkers. MicroRNAs are small non-coding RNAs that modify gene expression post-transcriptionally. They have been implicated in the pathogenesis of many diseases, including the cholangiopathies. Thus, in this review we provide an overview of the literature on miRNAs in the cholangiopathies and discuss future research directions.
Collapse
|