1
|
Knappeová B, Mlýnský V, Pykal M, Šponer J, Banáš P, Otyepka M, Krepl M. Comprehensive Assessment of Force-Field Performance in Molecular Dynamics Simulations of DNA/RNA Hybrid Duplexes. J Chem Theory Comput 2024; 20:6917-6929. [PMID: 39012172 PMCID: PMC11325551 DOI: 10.1021/acs.jctc.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Mixed double helices formed by RNA and DNA strands, commonly referred to as hybrid duplexes or hybrids, are essential in biological processes like transcription and reverse transcription. They are also important for their applications in CRISPR gene editing and nanotechnology. Yet, despite their significance, the hybrid duplexes have been seldom modeled by atomistic molecular dynamics methodology, and there is no benchmark study systematically assessing the force-field performance. Here, we present an extensive benchmark study of polypurine tract (PPT) and Dickerson-Drew dodecamer hybrid duplexes using contemporary and commonly utilized pairwise additive and polarizable nucleic acid force fields. Our findings indicate that none of the available force-field choices accurately reproduces all the characteristic structural details of the hybrid duplexes. The AMBER force fields are unable to populate the C3'-endo (north) pucker of the DNA strand and underestimate inclination. The CHARMM force field accurately describes the C3'-endo pucker and inclination but shows base pair instability. The polarizable force fields struggle with accurately reproducing the helical parameters. Some force-field combinations even demonstrate a discernible conflict between the RNA and DNA parameters. In this work, we offer a candid assessment of the force-field performance for mixed DNA/RNA duplexes. We provide guidance on selecting utilizable force-field combinations and also highlight potential pitfalls and best practices for obtaining optimal performance.
Collapse
Affiliation(s)
- Barbora Knappeová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Martin Pykal
- Czech Advanced Technology and Research Institute, CATRIN, Palacký University, Křížkovského 511/8, Olomouc 779 00, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Pavel Banáš
- Czech Advanced Technology and Research Institute, CATRIN, Palacký University, Křížkovského 511/8, Olomouc 779 00, Czech Republic
| | - Michal Otyepka
- Czech Advanced Technology and Research Institute, CATRIN, Palacký University, Křížkovského 511/8, Olomouc 779 00, Czech Republic
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| |
Collapse
|
2
|
Mervant L, Tremblay-Franco M, Jamin EL, Kesse-Guyot E, Galan P, Martin JF, Guéraud F, Debrauwer L. Osmolality-based normalization enhances statistical discrimination of untargeted metabolomic urine analysis: results from a comparative study. Metabolomics 2021; 17:2. [PMID: 33389209 DOI: 10.1007/s11306-020-01758-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Because of its ease of collection, urine is one of the most commonly used matrices for metabolomics studies. However, unlike other biofluids, urine exhibits tremendous variability that can introduce confounding inconsistency during result interpretation. Despite many existing techniques to normalize urine samples, there is still no consensus on either which method is most appropriate or how to evaluate these methods. OBJECTIVES To investigate the impact of several methods and combinations of methods conventionally used in urine metabolomics on the statistical discrimination of two groups in a simple metabolomics study. METHODS We applied 14 different strategies of normalization to forty urine samples analysed by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). To evaluate the impact of these different strategies, we relied on the ability of each method to reduce confounding variability while retaining variability of interest, as well as the predictability of statistical models. RESULTS Among all tested normalization methods, osmolality-based normalization gave the best results. Moreover, we demonstrated that normalization using a specific dilution prior to the analysis outperformed post-acquisition normalization. We also demonstrated that the combination of various normalization methods does not necessarily improve statistical discrimination. CONCLUSIONS This study re-emphasized the importance of normalizing urine samples for metabolomics studies. In addition, it appeared that the choice of method had a significant impact on result quality. Consequently, we suggest osmolality-based normalization as the best method for normalizing urine samples. TRIAL REGISTRATION NUMBER NCT03335644.
Collapse
Affiliation(s)
- Loïc Mervant
- Metatoul-AXIOM Platform, MetaboHUB, Toxalim, INRAE, Toulouse, France
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Marie Tremblay-Franco
- Metatoul-AXIOM Platform, MetaboHUB, Toxalim, INRAE, Toulouse, France.
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Emilien L Jamin
- Metatoul-AXIOM Platform, MetaboHUB, Toxalim, INRAE, Toulouse, France
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Emmanuelle Kesse-Guyot
- Sorbonne Paris Nord University, Inserm, INRAE, Cnam, Nutritional Epidemiology, Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), 93017, Bobigny, France
| | - Pilar Galan
- Sorbonne Paris Nord University, Inserm, INRAE, Cnam, Nutritional Epidemiology, Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), 93017, Bobigny, France
| | - Jean-François Martin
- Metatoul-AXIOM Platform, MetaboHUB, Toxalim, INRAE, Toulouse, France
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Françoise Guéraud
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laurent Debrauwer
- Metatoul-AXIOM Platform, MetaboHUB, Toxalim, INRAE, Toulouse, France
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
3
|
Zhang N, Liu J, Liu Y, Wu WH, Fang J, Da XD, Wang S, Zhang WB. NMR Spectroscopic Studies Reveal the Critical Role of the Isopeptide Bond in Forming the Otherwise Unstable SpyTag-SpyCatcher Mutant Complexes. Biochemistry 2020; 59:2226-2236. [PMID: 32469203 DOI: 10.1021/acs.biochem.0c00287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interplay between protein folding and chemical reaction has been an intriguing subject. In this contribution, we report the study of SpyTag and SpyCatcher reactive mutants using a combination of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, liquid chromatography and mass spectrometry, circular dichroism, and NMR spectroscopy. It was found that the wild-type SpyCatcher is well-folded in solution and docks with SpyTag to form an intermediate that promotes isopeptide bond formation. By contrast, the double mutant SpyCatcherVA is disordered in solution yet remains reactive toward SpyTag, forming a well-folded covalent complex. Control experiments using the catalytically inactive mutants further reveal the critical role of the isopeptide bond in stabilizing the otherwise loose SpyTag-SpyCatcherVA complex, amplifying the effect of the minute sequence disparity. We believe that the synergy between protein folding and isopeptide bonding is an effective way to enhance protein stability and engineer protein-protein interactions.
Collapse
Affiliation(s)
- Nan Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Jing Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Beijing NMR Center, Peking University, Beijing 100871, P. R. China
| | - Yajie Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiao-Di Da
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Shenlin Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Beijing NMR Center, Peking University, Beijing 100871, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|