1
|
Liu M, Zheng S, Tang Y, Han W, Li W, Li T. Specific Substrate Activity of Lotus Root Polyphenol Oxidase: Insights from Gaussian-Accelerated Molecular Dynamics and Markov State Models. Int J Mol Sci 2024; 25:10074. [PMID: 39337569 PMCID: PMC11432685 DOI: 10.3390/ijms251810074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Polyphenol oxidase (PPO) plays a key role in the enzymatic browning process, and this study employed Gaussian-accelerated molecular dynamics (GaMD) simulations to investigate the catalytic efficiency mechanisms of lotus root PPO with different substrates, including catechin, epicatechin, and chlorogenic acid, as well as the inhibitor oxalic acid. Key findings reveal significant conformational changes in PPO that correlate with its enzymatic activity. Upon substrate binding, the alpha-helix in the Q53-D63 region near the copper ion extends, likely stabilizing the active site and enhancing catalysis. In contrast, this helix is disrupted in the presence of the inhibitor, resulting in a decrease in enzymatic efficiency. Additionally, the F350-V378 region, which covers the substrate-binding site, forms an alpha-helix upon substrate binding, further stabilizing the substrate and promoting catalytic function. However, this alpha-helix does not form when the inhibitor is bound, destabilizing the binding site and contributing to inhibition. These findings offer new insights into the substrate-specific and inhibitor-induced structural dynamics of lotus root PPO, providing valuable information for enhancing food processing and preservation techniques.
Collapse
Affiliation(s)
- Minghao Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (M.L.); (W.H.)
| | - Siyun Zheng
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.Z.); (Y.T.); (W.L.)
| | - Yijia Tang
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.Z.); (Y.T.); (W.L.)
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (M.L.); (W.H.)
| | - Wannan Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (S.Z.); (Y.T.); (W.L.)
| | - Tao Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (M.L.); (W.H.)
| |
Collapse
|
2
|
Singh P, Kumar V, Lee KW, Hong JC. Discovery of Novel Allosteric SHP2 Inhibitor Using Pharmacophore-Based Virtual Screening, Molecular Docking, Molecular Dynamics Simulation, and Principal Component Analysis. Pharmaceuticals (Basel) 2024; 17:935. [PMID: 39065785 PMCID: PMC11280062 DOI: 10.3390/ph17070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
SHP2 belongs to a cytoplasmic non-receptor protein tyrosine phosphatase class. It plays a critical role in the development of various cancers, such as gastric cancer, leukemia, and breast cancer. Thus, SHP2 has gained the interest of researchers as a potential target for inhibiting tumor cell proliferation in SHP2-dependent cancers. This study employed pharmacophore-based virtual screening, molecular docking, molecular dynamic (MD) simulations, MM/PBSA, and principal component analysis (PCA), followed by ADME prediction. We selected three potential hits from a collective database of more than one million chemical compounds. The stability of these selected hit-protein complexes was analyzed using 500 ns MD simulations and binding free energy calculations. The identified hits Lig_1, Lig_6, and Lig_14 demonstrated binding free energies of -161.49 kJ/mol, -151.28 kJ/mol, and -107.13 kJ/mol, respectively, compared to the reference molecule (SHP099) with a ΔG of -71.48 kJ/mol. Our results showed that the identified compounds could be used as promising candidates for selective SHP2 allosteric inhibition in cancer.
Collapse
Affiliation(s)
- Pooja Singh
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea;
| | - Vikas Kumar
- Computational Biophysics Lab, Basque Center for Materials, Applications, and Nanostructures (BCMaterials), Buil. Martina Casiano, Pl. 3 Parque Científico UPV/EHU Barrio Sarriena, 48940 Leioa, Spain;
| | - Keun Woo Lee
- Korea Quantum Computing (KQC), 55 Centumjungang-ro, Haeundae, Busan 48058, Republic of Korea
- Angel i-Drug Design (AiDD), 33-3 Jinyangho-ro 44, Jinju 52650, Republic of Korea
| | - Jong Chan Hong
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea;
| |
Collapse
|
3
|
Saini S, Kumar Y. Structural and functional analysis of engineered antibodies for cancer immunotherapy: insights into protein compactness and solvent accessibility. J Biomol Struct Dyn 2024:1-14. [PMID: 38173178 DOI: 10.1080/07391102.2023.2300129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Antibodies are crucial tools in various biomedical applications, including immunotherapy. In this study, we focused on designing and engineering antibodies to enhance their structural dynamics and functional properties. By employing advanced computational techniques and experimental validation, we gained crucial insights into the impact of specific mutations on the engineered antibodies. This study investigates the design and engineering of antibodies to improve their structural dynamics and functional properties. Structural attributes, such as protein compactness and solvent accessibility, were assessed, revealing interesting trends in anti-CD3 and anti-HER2 antibodies. Mutations in CD3 antibodies resulted in a more stable conformation, while mutant HER2 antibodies exhibited altered interaction with the target. Analysis of secondary structure assignments demonstrated significant changes in the folding and stability of the mutant antibodies compared to the wild-type counterparts. The conformational landscape of the engineered antibodies was explored, providing insights into folding pathways and binding mechanisms. Overall, the current study highlights the significance of antibody design and engineering in modulating structural dynamics and functional properties. The findings contribute to developing improved immunotherapeutic strategies by optimising antibody-based therapeutics for targeted diseases with enhanced efficacy and precision.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samvedna Saini
- Department of Biological Sciences and Engineering (BSE), Netaji Subhas University of Technology (NSUT), New Delhi, India
| | - Yatender Kumar
- Department of Biological Sciences and Engineering (BSE), Netaji Subhas University of Technology (NSUT), New Delhi, India
| |
Collapse
|
4
|
Khan MT, Ali A, Wei X, Nadeem T, Muhammad S, Al-Sehemi AG, Wei D. Inhibitory effect of thymoquinone from Nigella sativa against SARS-CoV-2 main protease. An in-silico study. BRAZ J BIOL 2024; 84:e250667. [DOI: 10.1590/1519-6984.25066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Nigella sativa is known for the safety profile, containing a wealth of useful antiviral compounds. The main protease (Mpro, 3CLpro) of severe acute respiratory syndrome 2 (SARS-CoV-2) is being considered as one of the most attractive viral target, processing the polyproteins during viral pathogenesis and replication. In the current investigation we analyzed the potency of active component, thymoquinone (TQ) of Nigella sativa against SARS-CoV-2 Mpro. The structures of TQ and Mpro was retrieved from PubChem (CID10281) and Protein Data Bank (PDB ID 6MO3) respectively. The Mpro and TQ were docked and the complex was subjected to molecular dynamic (MD) simulations for a period 50ns. Protein folding effect was analyzed using radius of gyration (Rg) while stability and flexibility was measured, using root means square deviations (RMSD) and root means square fluctuation (RMSF) respectively. The simulation results shows that TQ is exhibiting good binding activity against SARS-CoV-2 Mpro, interacting many residues, present in the active site (His41, Cys145) and also the Glu166, facilitating the pocket shape. Further, experimental approaches are needed to validate the role of TQ against virus infection. The TQ is interfering with pocket maintaining residues as well as active site of virus Mpro which may be used as a potential inhibitor against SARS-CoV-2 for better management of COVID-19.
Collapse
Affiliation(s)
| | - A. Ali
- Shanghai Jiao Tong University, China
| | - X. Wei
- Shanghai Jiao Tong University, China
| | | | | | | | - Dongqing Wei
- Shanghai Jiao Tong University, China; Peng Cheng Laboratory, China
| |
Collapse
|
5
|
Pintea M, Mason N, Peiró-Franch A, Clark E, Samanta K, Glessi C, Schmidtke IL, Luxford T. Dissociative electron attachment to gold(I)-based compounds: 4,5-dichloro-1,3-diethyl-imidazolylidene trifluoromethyl gold(I). Front Chem 2023; 11:1028008. [PMID: 37405247 PMCID: PMC10315492 DOI: 10.3389/fchem.2023.1028008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
With the use of proton-NMR and powder XRD (XRPD) studies, the suitability of specific Au-focused electron beam induced deposition (FEBID) precursors has been investigated with low electron energy, structure, excited states and resonances, structural crystal modifications, flexibility, and vaporization level. 4,5-Dichloro-1,3-diethyl-imidazolylidene trifluoromethyl gold(I) is a compound that is a uniquely designed precursor to meet the needs of focused electron beam-induced deposition at the nanostructure level, which proves its capability in creating high purity structures, and its growing importance in other AuImx and AuClnB (where x and n are the number of radicals, B = CH, CH3, or Br) compounds in the radiation cancer therapy increases the efforts to design more suitable bonds in processes of SEM (scanning electron microscopy) deposition and in gas-phase studies. The investigation performed of its powder shape using the XRPD XPERT3 panalytical diffractometer based on CoKα lines shows changes to its structure with change in temperature, level of vacuum, and light; the sensitivity of this compound makes it highly interesting in particular to the radiation research. Used in FEBID, though its smaller number of C, H, and O atoms has lower levels of C contamination in the structures and on the surface, it replaces these bonds with C-Cl and C-N bonds that have lower bond-breaking energy. However, it still needs an extra purification step in the deposition process, either H2O, O2, or H jets.
Collapse
Affiliation(s)
- Maria Pintea
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | - Nigel Mason
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | - Anna Peiró-Franch
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | - Ewan Clark
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | - Kushal Samanta
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | | | | | - Thomas Luxford
- Department of Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
6
|
Ataei Z, Nouri Z, Tavakoli F, Pourreza MR, Narrei S, Tabatabaiefar MA. Novel in-frame duplication variant characterization in late infantile metachromatic leukodystrophy using whole-exome sequencing and molecular dynamics simulation. PLoS One 2023; 18:e0282304. [PMID: 36848337 PMCID: PMC9970088 DOI: 10.1371/journal.pone.0282304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 02/12/2023] [Indexed: 03/01/2023] Open
Abstract
Metachromatic leukodystrophy (MLD) is a neurodegenerative lysosomal storage disease caused by a deficiency in the arylsulfatase A (ARSA). ARSA deficiency leads to sulfatide accumulation, which involves progressive demyelination. The profound impact of early diagnosis on MLD treatment options necessitates the development of new or updated analysis tools and approaches. In this study, to identify the genetic etiology in a proband from a consanguineous family with MLD presentation and low ARSA activity, we employed Whole-Exome Sequencing (WES) followed by co-segregation analysis using Sanger sequencing. Also, MD simulation was utilized to study how the variant alters the structural behavior and function of the ARSA protein. GROMACS was applied and the data was analyzed by RMSD, RMSF, Rg, SASA, HB, atomic distance, PCA, and FEL. Variant interpretation was done based on the American College of Medical Genetics and Genomics (ACMG) guidelines. WES results showed a novel homozygous insertion mutation, c.109_126dup (p.Asp37_Gly42dup), in the ARSA gene. This variant is located in the first exon of ARSA, fulfilling the criteria of being categorized as likely pathogenic, according to the ACMG guidelines and it was also found to be co-segregating in the family. The MD simulation analysis revealed this mutation influenced the structure and the stabilization of ARSA and led to the protein function impairment. Here, we report a useful application of WES and MD to identify the causes of a neurometabolic disorder.
Collapse
Affiliation(s)
- Zahra Ataei
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Nouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farial Tavakoli
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Sina Narrei
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Research and Development, ERYTHROGEN Medical Genetics Lab, Isfahan, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- * E-mail: ,
| |
Collapse
|
7
|
Jeevanandam J, Paramasivam E, Saraswathi NT. Glycation restrains open-closed conformation of Insulin. Comput Biol Chem 2023; 102:107803. [PMID: 36542957 DOI: 10.1016/j.compbiolchem.2022.107803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
In hyperglycemic conditions, the level of reactive dicarbonyl metabolites concentration is found to be high, which plays a significant role in protein glycation. Despite decades of research, the effect of methylglyoxal on the structure and function of insulin is still unknown. Through a shift in conformation at the B-chain C-terminal (BT-CT) hinge from an "open" to a "wide-open" conformation, insulin binds to the receptor and activates the signal cascade. Insulin resistance, which is the main sign of Type 2 Diabetes, can be caused by a lack of insulin signaling. Methylglyoxal site-specific glycation in residue R22 at B chain forms AGE product Methylglyoxal-hydroimidazolone (MGH1) in insulin. In this work, we present molecular dynamics study of this glycated insulin R22MGH1, which revealed new insights into the conformational and structural changes. We find the following key results: 1) B-chain in insulin undergoes a closed conformational change upon glycation. 2) Glycated insulin shows secondary structure alteration. 3) Glycated insulin retains its closed shape due to an unusually strong hydrophobic contact between B-chain residues. 4) Wide open native conformation of insulin allows the B chain helix to be surrounded by more water molecules compared to the closed conformation of glycated insulin. The closed conformation of glycated insulin impairs its binding to insulin receptor (IR).
Collapse
Affiliation(s)
- Jayanth Jeevanandam
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamilnadu, India
| | - Esackimuthu Paramasivam
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamilnadu, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamilnadu, India.
| |
Collapse
|
8
|
Niu Z, Hasegawa K, Deng Y, Zhang Z, Rafailovich M, Simon M, Zhang P. Modeling of the thermal properties of SARS-CoV-2 S-protein. Front Mol Biosci 2022; 9:953064. [PMID: 36237574 PMCID: PMC9550926 DOI: 10.3389/fmolb.2022.953064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
We calculate the thermal and conformational states of the spike glycoprotein (S-protein) of SARS-CoV-2 at seven temperatures ranging from 3°C to 95°C by all-atom molecular dynamics (MD) µs-scale simulations with the objectives to understand the structural variations on the temperatures and to determine the potential phase transition while trying to correlate such findings of the S-protein with the observed properties of the SARS-CoV2. Our simulations revealed the following thermal properties of the S-protein: 1) It is structurally stable at 3°C, agreeing with observations that the virus stays active for more than two weeks in the cold supply chain; 2) Its structure varies more significantly at temperature values of 60°C-80°C; 3) The sharpest structural variations occur near 60°C, signaling a plausible critical temperature nearby; 4) The maximum deviation of the receptor-binding domain at 37°C, corroborating the anecdotal observations that the virus is most infective at 37°C; 5) The in silico data agree with reported experiments of the SARS-CoV-2 survival times from weeks to seconds by our clustering approach analysis. Our MD simulations at µs scales demonstrated the S-protein's thermodynamics of the critical states at around 60°C, and the stable and denatured states for temperatures below and above this value, respectively.
Collapse
Affiliation(s)
- Ziyuan Niu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Karin Hasegawa
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Yuefan Deng
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
- Mathematics, Division of Science, New York University, Abu Dhabi, United Arab Emirates
| | - Ziji Zhang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Miriam Rafailovich
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Marcia Simon
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, NY, United States
| | - Peng Zhang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
9
|
Randhawa V, Pathania S, Kumar M. Computational Identification of Potential Multitarget Inhibitors of Nipah Virus by Molecular Docking and Molecular Dynamics. Microorganisms 2022; 10:microorganisms10061181. [PMID: 35744699 PMCID: PMC9227315 DOI: 10.3390/microorganisms10061181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Nipah virus (NiV) is a recently emerged paramyxovirus that causes severe encephalitis and respiratory diseases in humans. Despite the severe pathogenicity of this virus and its pandemic potential, not even a single type of molecular therapeutics has been approved for human use. Considering the role of NiV attachment glycoprotein G (NiV-G), fusion glycoprotein (NiV-F), and nucleoprotein (NiV-N) in virus replication and spread, these are the most attractive targets for anti-NiV drug discovery. Therefore, to prospect for potential multitarget chemical/phytochemical inhibitor(s) against NiV, a sequential molecular docking and molecular-dynamics-based approach was implemented by simultaneously targeting NiV-G, NiV-F, and NiV-N. Information on potential NiV inhibitors was compiled from the literature, and their 3D structures were drawn manually, while the information and 3D structures of phytochemicals were retrieved from the established structural databases. Molecules were docked against NiV-G (PDB ID:2VSM), NiV-F (PDB ID:5EVM), and NiV-N (PDB ID:4CO6) and then prioritized based on (1) strong protein-binding affinity, (2) interactions with critically important binding-site residues, (3) ADME and pharmacokinetic properties, and (4) structural stability within the binding site. The molecules that bind to all the three viral proteins (NiV-G ∩ NiV-F ∩ NiV-N) were considered multitarget inhibitors. This study identified phytochemical molecules RASE0125 (17-O-Acetyl-nortetraphyllicine) and CARS0358 (NA) as distinct multitarget inhibitors of all three viral proteins, and chemical molecule ND_nw_193 (RSV604) as an inhibitor of NiV-G and NiV-N. We expect the identified compounds to be potential candidates for in vitro and in vivo antiviral studies, followed by clinical treatment of NiV.
Collapse
Affiliation(s)
- Vinay Randhawa
- Virology Discovery Unit and Bioinformatics Centre, CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh 160036, India; (V.R.); (S.P.)
| | - Shivalika Pathania
- Virology Discovery Unit and Bioinformatics Centre, CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh 160036, India; (V.R.); (S.P.)
| | - Manoj Kumar
- Virology Discovery Unit and Bioinformatics Centre, CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh 160036, India; (V.R.); (S.P.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence: ; Tel.: +91-172-6665453
| |
Collapse
|
10
|
Zhou H, Fu H, Liu H, Shao X, Cai W. Uncovering the Mechanism of Drug Resistance Caused by the T790M Mutation in EGFR Kinase From Absolute Binding Free Energy Calculations. Front Mol Biosci 2022; 9:922839. [PMID: 35707225 PMCID: PMC9189374 DOI: 10.3389/fmolb.2022.922839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of drug resistance may increase the death rates in advanced non-small cell lung cancer (NSCLC) patients. The resistance of erlotinib, the effective first-line antitumor drug for NSCLC with the L858R mutation of epidermal growth factor receptor (EGFR), happens after the T790M mutation of EGFR, because this mutation causes the binding of adenosine triphosphate (ATP) to EGFR more favorable than erlotinib. However, the mechanism of the enhancement of the binding affinity of ATP to EGFR, which is of paramount importance for the development of new inhibitors, is still unclear. In this work, to explore the detailed mechanism of the drug resistance due to the T790M mutation, molecular dynamics simulations and absolute binding free energy calculations have been performed. The results show that the binding affinity of ATP with respect to the L858R/T790M mutant is higher compared with the L858R mutant, in good agreement with experiments. Further analysis demonstrates that the T790M mutation significantly changes the van der Waals interaction of ATP and the binding site. We also find that the favorable binding of ATP to the L858R/T790M mutant, compared with the L858R mutant, is due to a conformational change of the αC-helix, the A-loop and the P-loop of the latter induced by the T790M mutation. This change makes the interaction of ATP and P-loop, αC-helix in the L858R/T790M mutant higher than that in the L858R mutant, therefore increasing the binding affinity of ATP to EGFR. We believe the drug-resistance mechanism proposed in this study will provide valuable guidance for the design of drugs for NSCLC.
Collapse
Affiliation(s)
- Huaxin Zhou
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Haohao Fu
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Han Liu
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
- *Correspondence: Xueguang Shao, ; Wensheng Cai,
| | - Wensheng Cai
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
- *Correspondence: Xueguang Shao, ; Wensheng Cai,
| |
Collapse
|
11
|
Rana N, Singh AK, Shuaib M, Gupta S, Habiballah MM, Alkhanani MF, Haque S, Reshi MS, Kumar S. Drug Resistance Mechanism of M46I-Mutation-Induced Saquinavir Resistance in HIV-1 Protease Using Molecular Dynamics Simulation and Binding Energy Calculation. Viruses 2022; 14:v14040697. [PMID: 35458427 PMCID: PMC9031992 DOI: 10.3390/v14040697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Drug-resistance-associated mutation in essential proteins of the viral life cycle is a major concern in anti-retroviral therapy. M46I, a non-active site mutation in HIV-1 protease has been clinically associated with saquinavir resistance in HIV patients. A 100 ns molecular dynamics (MD) simulation and MM-PBSA calculations were performed to study the molecular mechanism of M46I-mutation-based saquinavir resistance. In order to acquire deeper insight into the drug-resistance mechanism, the flap curling, closed/semi-open/open conformations, and active site compactness were studied. The M46I mutation significantly affects the energetics and conformational stability of HIV-1 protease in terms of RMSD, RMSF, Rg, SASA, and hydrogen formation potential. This mutation significantly decreased van der Waals interaction and binding free energy (∆G) in the M46I–saquinavir complex and induced inward flap curling and a wider opening of the flaps for most of the MD simulation period. The predominant open conformation was reduced, but inward flap curling/active site compactness was increased in the presence of saquinavir in M46I HIV-1 protease. In conclusion, the M46I mutation induced structural dynamics changes that weaken the protease grip on saquinavir without distorting the active site of the protein. The produced information may be utilized for the discovery of inhibitor(s) against drug-resistant HIV-1 protease.
Collapse
Affiliation(s)
- Nilottam Rana
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda 151401, Punjab, India; (N.R.); (A.K.S.); (M.S.)
| | - Atul Kumar Singh
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda 151401, Punjab, India; (N.R.); (A.K.S.); (M.S.)
| | - Mohd Shuaib
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda 151401, Punjab, India; (N.R.); (A.K.S.); (M.S.)
| | - Sanjay Gupta
- Department of Urology, Pharmacology and Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Mahmoud M. Habiballah
- Medical Laboratory Technology Department, Jazan University, Jazan 45142, Saudi Arabia;
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan 45142, Saudi Arabia
| | - Mustfa F. Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
| | - Mohd Salim Reshi
- Toxicology and Pharmacology Lab., Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu & Kashmir, India;
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda 151401, Punjab, India; (N.R.); (A.K.S.); (M.S.)
- Correspondence:
| |
Collapse
|
12
|
Tran TT, Linga VG, Al-Obaide MAI, Bello-Germino D, Hoda M, Adesanya O, Vasylyeva TL. Congenital nephrotic syndrome in a Hispanic Guatemalan newborn associated with a NPHS1 variant: A case report. Biomed Rep 2021; 16:4. [PMID: 34900253 PMCID: PMC8652645 DOI: 10.3892/br.2021.1487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/05/2021] [Indexed: 11/06/2022] Open
Abstract
Congenital nephrotic syndrome (CNS) is an autosomal recessive disorder usually detected in the first 3 months of life when the syndromes effects manifest, including edema and a failure to gain weight. A baby boy was admitted to the Neonatal Intensive Care Unit for prematurity (35 weeks) with unremarkable maternal prenatal laboratory tests. The patient had persistent systemic hypertension, hypoproteinemia, hypoalbuminemia and nephrotic range proteinuria. CNS was diagnosed, and genetic testing showed a homozygous variant, c.3024A>G (AGA>AGG) in exon 22 of the nephrin locus. Bioinformatics analysis suggested the genetic condition was likely a result of malfunctional DNA binding sites of transcription factors FOXL1 and FOXC1.
Collapse
Affiliation(s)
- Thu T Tran
- Department of Pediatrics, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Vijay G Linga
- Department of Pediatrics, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Mohammed A I Al-Obaide
- Department of Pediatrics, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Daniella Bello-Germino
- Department of Pediatrics, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Mehar Hoda
- Department of Pediatrics, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Olubukunola Adesanya
- Department of Pediatrics, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Tetyana L Vasylyeva
- Department of Pediatrics, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
13
|
Mou K, Abdalla M, Wei DQ, Khan MT, Lodhi MS, Darwish DB, Sharaf M, Tu X. Emerging mutations in envelope protein of SARS-CoV-2 and their effect on thermodynamic properties. INFORMATICS IN MEDICINE UNLOCKED 2021; 25:100675. [PMID: 34337139 PMCID: PMC8314890 DOI: 10.1016/j.imu.2021.100675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 12/23/2022] Open
Abstract
Structural proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are potential drug targets due to their role in the virus life cycle. The envelope (E) protein is one of the structural proteins; plays a critical role in virulency. However, the emergence of mutations oftenly leads to drug resistance and may also play a vital role in virus stabilization and evolution. In this study, we aimed to identify mutations in E proteins that affect the protein stability. About 0.3 million complete whole genome sequences were analyzed to screen mutations in E protein. All these mutations were subjected to stability prediction using the DynaMut server. The most common mutations that were detected at the C-terminal domain, Ser68Phe, Pro71Ser, and Leu73Phe, were examined through molecular dynamics (MD) simulations for a 100ns period. The sequence analysis shows the existence of 259 mutations in E protein. Interestingly, 16 of them were detected in the DFLV amino acid (aa) motif (aa72-aa75) that binds the host PALS1 protein. The results of root mean square deviation, fluctuations, radius of gyration, and free energy landscape show that Ser68Phe, Pro71Ser, and Leu73Phe are exhibiting a more stabilizing effect. However, a more comprehensive experimental study may be required to see the effect on virus pathogenicity. Potential antiviral drugs, and vaccines may be developed used after screening the genomic variations for better management of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Kejie Mou
- Department of Neurosurgery, Bishan Hospital of Chongqing, Chongqing, China
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province, 250012, PR China
| | - Dong Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China
| | - Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, KM Defence Road, Lahore, Pakistan, 58810
| | - Madeeha Shahzad Lodhi
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, KM Defence Road, Lahore, Pakistan, 58810
| | - Doaa B Darwish
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Saudi Arabia
| | - Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
- Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Xudong Tu
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| |
Collapse
|
14
|
Chen J, Zhang S, Wang W, Pang L, Zhang Q, Liu X. Mutation-Induced Impacts on the Switch Transformations of the GDP- and GTP-Bound K-Ras: Insights from Multiple Replica Gaussian Accelerated Molecular Dynamics and Free Energy Analysis. J Chem Inf Model 2021; 61:1954-1969. [PMID: 33739090 DOI: 10.1021/acs.jcim.0c01470] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mutations yield significant effect on the structural flexibility of two switch domains, SW1 and SW2, in K-Ras, which is considered as an important target of anticancer drug design. To unveil a molecular mechanism with regard to mutation-mediated tuning on the activity of K-Ras, multiple replica Gaussian accelerated molecular dynamics (MR-GaMD) simulations followed by analysis of free energy landscapes (FELs) are performed on the GDP- and GTP-bound wild-type (WT), G12V, and D33E K-Ras. The results suggest that G12V and D33E not only evidently change the flexibility of SW1 and SW2 but also greatly affect correlated motions of SW1 and SW2 separately relative to the P-loop and SW1, which exerts a certain tuning on the activity of K-Ras. The information stemming from the analyses of FELs reveals that the conformations of SW1 and SW2 are in high disorders in the GDP- and GTP-associated WT and mutated K-Ras, possibly producing significant effect on binding of guanine nucleotide exchange factors or effectors to K-Ras. The interaction networks of GDP and GTP with K-Ras are identified and the results uncover that the instability in hydrogen-bonding interactions of SW1 with GDP and GTP is mostly responsible for conformational disorder of SW1 and SW2 as well as tunes the activity of oncogenic K-Ras.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| |
Collapse
|