1
|
Li Y, Yang X, Shi C, Wang L, Wang Y, Zhang W, Wang P, Zhang H, Yang X, Wen P. Insights into the microscopic heterogeneity of whey proteins between yak colostrum and mature milk based on 4D lable-free quantitative phosphoproteomics. Food Chem 2024; 460:140679. [PMID: 39106750 DOI: 10.1016/j.foodchem.2024.140679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
This study aimed to reveal the change patterns of the phosphorylation modification status of yak whey phosphoproteins during lactation and their physiological effects. Herein, we comprehensively characterized whey phosphoproteome in yak colostrum and mature milk using an ultra-high throughput phosphoproteomics approach incorporating trapped ion mobility technology. A total of 344 phosphorylation sites from 206 phosphoproteins were identified, with individual site modification predominating. Notably, 117 significantly different phosphorylation sites were distributed on 89 whey phosphoproteins. Gene ontology analysis indicated that these significantly different whey phosphoproteins (SDWPPs) were mainly annotated to carbohydrate metabolic process, membrane, extracellular region and calcium ion binding. Metabolic pathway enrichment analysis demonstrated that SDWPPs were critically involved in protein processing in endoplasmic reticulum, NOD-like receptor signaling pathway and N-glycan biosynthesis. Our results elucidate the phosphorylation profiles of yak whey phosphoproteins at different lactations and their adaptive regulatory role in meeting the nutritional requirements of yak calves during development.
Collapse
Affiliation(s)
- Yiheng Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xue Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Chengrui Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Longlin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ying Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibing Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Hao Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xiaoli Yang
- Gansu Institute of Business and Technology, Lanzhou 730010, China.
| | - Pengcheng Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
2
|
Shankar S, Kumar Y, Sharma N, Chandra R, Kumar S. Disposable Zirconium trisulfide-Reduced graphene oxide modified conducting thread based electrochemical biosensor for lung cancer diagnosis. Bioelectrochemistry 2024; 160:108801. [PMID: 39226732 DOI: 10.1016/j.bioelechem.2024.108801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Flexible technology in sensors have received much attention in monitoring of human health through various physiological indicators. Thus, it drawn a lot of interest in the development of flexible substrate for the diagnosis of various diseases via analysis of analytes. Present work focusses on the development of ecofriendly, portable, flexible, conducting thread (Th) and used as smart substrate for fabrication of biosensor towards ultrasensitive detection of the lung cancer biomarker (cytoskeleton-associated protein 4; CKAP4). The zirconium trisulfide-reduced graphene oxide nanocomposite and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) modified cotton thread based biosensor was fabricated via dip coating method. Next, successive immobilization of monoclonal antibodies of CKAP4 (anti-CKAP4) and bovine serum albumin (BSA) was performed via drop cast approach using fabricated electrode [nZrS3@rGO/PEDOT:PSS/Th]. The response of fabricated electrode (BSA/anti-CKAP4/ZrS3@rGO/PEDOT:PSS/Th) was recorded electrochemically versus CKAP4 concentration via chronoamperometry (CA). The results showed wider linear detection range of 6.25-800 pg mL-1, excellent sensitivity of 85.2 µA[log(pg mL-1)]-1cm-2 with good stability up to 42 days. The response of fabricated biosensor was supported by investigating response of CKAP4 biomarker present in patients of lung cancer (concentration as determined through enzyme-linked immunosorbent assay) and obtained results exhibited excellent correlation with that of standard samples.
Collapse
Affiliation(s)
- Saurav Shankar
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Yogesh Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Neera Sharma
- Department of Chemistry, Hindu College, University of Delhi, Delhi 110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi 110007, India; Maharaja Surajmal Brij University, Kumher, Bharatpur 321201, India.
| | - Suveen Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India.
| |
Collapse
|
3
|
Li CM, Kang J, Baek J, Kim Y, Park H, Jung YK. Cytosolic FKBPL and ER-resident CKAP4 co-regulates ER-phagy and protein secretion. Nat Commun 2024; 15:7886. [PMID: 39251576 PMCID: PMC11383940 DOI: 10.1038/s41467-024-52188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
Endoplasmic reticulum quality control is crucial for maintaining cellular homeostasis and adapting to stress conditions. Although several ER-phagy receptors have been identified, the collaboration between cytosolic and ER-resident factors in ER fragmentation and ER-phagy regulation remains unclear. Here, we perform a phenotype-based gain-of-function screen and identify a cytosolic protein, FKBPL, functioning as an ER-phagy regulator. Overexpression of FKBPL triggers ER fragmentation and ER-phagy. FKBPL has multiple protein binding domains, can self-associate and might act as a scaffold connecting CKAP4 and LC3/GABARAPs. CKAP4 serves as a bridge between FKBPL and ER-phagy cargo. ER-phagy-inducing conditions increase FKBPL-CKAP4 interaction followed by FKBPL oligomerization at the ER, leading to ER-phagy. In addition, FKBPL-CKAP4 deficiency leads to Golgi disassembly and lysosome impairment, and an increase in ER-derived secretory vesicles and enhances cytosolic protein secretion via microvesicle shedding. Taken together, FKBPL with the aid of CKAP4 induces ER fragmentation and ER-phagy, and FKBPL-CKAP4 deficiency facilitates protein secretion.
Collapse
Affiliation(s)
- Cathena Meiling Li
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Jaemin Kang
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Jongyeon Baek
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Youbin Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Heemin Park
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea.
- Interdisciplinary Program in Neuroscience, Seoul National University, Gwanak-gu, Seoul, Korea.
| |
Collapse
|
4
|
Wang Y, Liu Y, Wang N, Liu Z, Qian G, Li X, Huang H, Zhuo W, Xu L, Zhang J, Lv H, Gao Y. Identification of novel mitophagy-related biomarkers for Kawasaki disease by integrated bioinformatics and machine-learning algorithms. Transl Pediatr 2024; 13:1439-1456. [PMID: 39263286 PMCID: PMC11384439 DOI: 10.21037/tp-24-230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Background Kawasaki disease (KD) is a systemic vasculitis primarily affecting the coronary arteries in children. Despite growing attention to its symptoms and pathogenesis, the exact mechanisms of KD remain unclear. Mitophagy plays a critical role in inflammation regulation, however, its significance in KD has only been minimally explored. This study sought to identify crucial mitophagy-related biomarkers and their mechanisms in KD, focusing on their association with immune cells in peripheral blood. Methods This research used four datasets from the Gene Expression Omnibus (GEO) database that were categorized as the merged and validation datasets. Screening for differentially expressed mitophagy-related genes (DE-MRGs) was conducted, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. A weighted gene co-expression network analysis (WGCNA) identified the hub module, while machine-learning algorithms [random forest-recursive feature elimination (RF-RFE) and support vector machine-recursive feature elimination (SVM-RFE)] pinpointed the hub genes. Receiver operating characteristic (ROC) curves were generated for these genes. Additionally, the CIBERSORT algorithm was used to assess the infiltration of 22 immune cell types to explore their correlations with hub genes. Interactions between transcription factors (TFs), genes, and Gene-microRNAs (miRNAs) of hub genes were mapped using the NetworkAnalyst platform. The expression difference of the hub genes was validated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Results Initially, 306 DE-MRGs were identified between the KD patients and healthy controls. The enrichment analysis linked these MRGs to autophagy, mitochondrial function, and inflammation. The WGCNA revealed a hub module of 47 KD-associated DE-MRGs. The machine-learning algorithms identified cytoskeleton-associated protein 4 (CKAP4) and serine-arginine protein kinase 1 (SRPK1) as critical hub genes. In the merged dataset, the area under the curve (AUC) values for CKAP4 and SRPK1 were 0.933 [95% confidence interval (CI): 0.901 to 0.964] and 0.936 (95% CI: 0.906 to 0.966), respectively, indicating high diagnostic potential. The validation dataset results corroborated these findings with AUC values of 0.872 (95% CI: 0.741 to 1.000) for CKAP4 and 0.878 (95% CI: 0.750 to 1.000) for SRPK1. The CIBERSORT analysis connected CKAP4 and SRPK1 with specific immune cells, including activated cluster of differentiation 4 (CD4) memory T cells. TFs such as MAZ, SAP30, PHF8, KDM5B, miRNAs like hsa-mir-7-5p play essential roles in regulating these hub genes. The qRT-PCR results confirmed the differential expression of these genes between the KD patients and healthy controls. Conclusions CKAP4 and SRPK1 emerged as promising diagnostic biomarkers for KD. These genes potentially influence the progression of KD through mitophagy regulation.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
- Department of Cardiology, The Affiliated Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ying Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Nana Wang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Zhiheng Liu
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Xuan Li
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Hongbiao Huang
- Department of Pediatrics, Fujian Provincial Hospital, Fujian Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Wenyu Zhuo
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Lei Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jiaying Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Yang Gao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
- Department of Pediatrics, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang (Lianyungang Clinical College of Nanjing Medical University), Lianyungang, China
| |
Collapse
|
5
|
Bai C, Liu X, Wang F, Sun Y, Wang J, Liu J, Hao X, Zhou L, Yuan Y, Liu J. Identification of immune-related biomarkers for intracerebral hemorrhage diagnosis based on RNA sequencing and machine learning. Front Immunol 2024; 15:1421942. [PMID: 39281688 PMCID: PMC11392791 DOI: 10.3389/fimmu.2024.1421942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Background Intracerebral hemorrhage (ICH) is a severe stroke subtype with high morbidity, disability, and mortality rates. Currently, no biomarkers for ICH are available for use in clinical practice. We aimed to explore the roles of RNAs in ICH pathogenesis and identify potential diagnostic biomarkers. Methods We collected 233 individual blood samples from two independent cohorts, including 64 patients with ICH, 59 patients with ischemic stroke (IS), 60 patients with hypertension (HTN) and 50 healthy controls (CTRL) for RNA sequencing. Differentially expressed genes (DEGs) analysis, gene set enrichment analysis (GSEA), and weighted correlation network analysis (WGCNA) were performed to identify ICH-specific modules. The immune cell composition was evaluated with ImmuneCellAI. Multiple machine learning algorithms to select potential biomarkers for ICH diagnosis, and further validated by quantitative real-time polymerase chain reaction (RT-PCR). Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were performed to evaluate the diagnostic value of the signature for ICH. Finally, we generated M1 and M2 macrophages to investigate the expression of candidate genes. Results In both cohorts, 519 mRNAs and 131 lncRNAs were consistently significantly differentially expressed between ICH patients and HTN controls. Gene function analysis suggested that immune system processes may be involved in ICH pathology. ImmuneCellAI analysis revealed that the abundances of 11 immune cell types were altered after ICH in both cohorts. WGCNA and GSEA identified 18 immune-related DEGs. Multiple algorithms identified an RNA panel (CKAP4, BCL6, TLR8) with high diagnostic value for discriminating ICH patients from HTN controls, CTRLs and IS patients (AUCs: 0.93, 0.95 and 0.82; sensitivities: 81.3%, 84.4% and 75%; specificities: 100%, 96% and 79.7%, respectively). Additionally, CKAP4 and TLR8 mRNA and protein levels decreased in RAW264.7 M1 macrophages and increased in RAW264.7 M2 macrophages, while BCL6 expression increased in M1 macrophages but not in M2 macrophages, which may provide potential therapeutic targets for ICH. Conclusions This study demonstrated that the expression levels of lncRNAs and mRNAs are associated with ICH, and an RNA panel (CKAP4, BCL6, TLR8) was developed as a potential diagnostic tool for distinguishing ICH from IS and controls, which could provide useful insight into ICH diagnosis and pathogenesis.
Collapse
Affiliation(s)
- Congxia Bai
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinran Liu
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fengjuan Wang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Hao
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Zhou
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Yuan
- Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Jiayun Liu
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Dişçi E, Peksöz R, Laloğlu E, Yıldırgan Mİ, Albayrak Y, Şirin MA, Ağırman E, Atamanalp SS. The Role of Serum Dickkopf1 and CKAP4 Levels in Diagnosing Colorectal Cancer and Measuring the Disease Severity: A Prospective Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:933. [PMID: 38929550 PMCID: PMC11205388 DOI: 10.3390/medicina60060933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Background and Objective: Colorectal cancer (CRC) is among the most common types of cancer. Although the disease is treatable in its early stages, five-year survival falls below 20% in the later stages. CEA and CA19-9 are tumor markers used in the diagnosis and follow-up of the disease in clinical practice; however, their diagnostic effectiveness is insufficient. Therefore, the identification of biomarkers that can be easily studied from serum and can diagnose CRC and determine its severity is highly important. In this context, dickkopf1 (DKK1) and cytoskeleton-associated protein 4 (CKAP4) are both promising biomarkers. Materials and Methods: Serum DKK1 and CKAP4 levels were measured in 55 patients with CRC and 40 healthy controls. The patients with CRC were divided into groups based on pathological stages and histological differentiation. The serum levels of both proteins in patients with CRC were measured preoperatively and 10 and 30 days postoperatively. Results: Serum DKK1 and CKAP4 were significantly higher in the CRC group than in the healthy controls (p < 0.05). Serum levels of both proteins rose in line with the disease stage and grade but decreased following surgical resection. A positive correlation was observed between tumor diameter and protein blood levels. The diagnostic efficacy of DKK1 and CKAP4 in CRC (approximately 95%) was higher than that of markers such as CEA and CA19-9. Conclusions: The DKK1 and CKAP4 serum values of patients with CRC are promising biomarkers. They can potentially be used in CRC management, namely, in the diagnosis and treatment of tumor response access and in tumor aggressiveness prediction.
Collapse
Affiliation(s)
- Esra Dişçi
- Department of General Surgery, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey; (E.D.); (R.P.); (M.İ.Y.)
| | - Rıfat Peksöz
- Department of General Surgery, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey; (E.D.); (R.P.); (M.İ.Y.)
| | - Esra Laloğlu
- Department Medical Biochemistry, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
| | - Mehmet İlhan Yıldırgan
- Department of General Surgery, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey; (E.D.); (R.P.); (M.İ.Y.)
| | - Yavuz Albayrak
- Department of General Surgery, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey; (E.D.); (R.P.); (M.İ.Y.)
| | - Mehmet Akif Şirin
- Department of General Surgery, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey; (E.D.); (R.P.); (M.İ.Y.)
| | - Enes Ağırman
- Department of General Surgery, Erzurum City Hospital, Erzurum 25240, Turkey
| | - Sabri Selçuk Atamanalp
- Department of General Surgery, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey; (E.D.); (R.P.); (M.İ.Y.)
| |
Collapse
|
7
|
Guo D, Zeng M, Yu M, Shang J, Lin J, Liu L, Yang K, Cao Z. SSR1 and CKAP4 as potential biomarkers for intervertebral disc degeneration based on integrated bioinformatics analysis. JOR Spine 2024; 7:e1309. [PMID: 38222802 PMCID: PMC10782074 DOI: 10.1002/jsp2.1309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a significant cause of low back pain and poses a significant public health concern. Genetic factors play a crucial role in IDD, highlighting the need for a better understanding of the underlying mechanisms. Aim The aim of this study was to identify potential IDD-related biomarkers using a comprehensive bioinformatics approach and validate them in vitro. Materials and Methods In this study, we employed several analytical approaches to identify the key genes involved in IDD. We utilized weighted gene coexpression network analysis (WGCNA), MCODE, LASSO algorithms, and ROC curves to identify the key genes. Additionally, immune infiltrating analysis and a single-cell sequencing dataset were utilized to further explore the characteristics of the key genes. Finally, we conducted in vitro experiments on human disc tissues to validate the significance of these key genes in IDD. Results we obtained gene expression profiles from the GEO database (GSE23130 and GSE15227) and identified 1015 DEGs associated with IDD. Using WGCNA, we identified the blue module as significantly related to IDD. Among the DEGs, we identified 47 hub genes that overlapped with the genes in the blue module, based on criteria of |logFC| ≥ 2.0 and p.adj <0.05. Further analysis using both MCODE and LASSO algorithms enabled us to identify five key genes, of which CKAP4 and SSR1 were validated by GSE70362, demonstrating significant diagnostic value for IDD. Additionally, immune infiltrating analysis revealed that monocytes were significantly correlated with the two key genes. We also analyzed a single-cell sequencing dataset, GSE199866, which showed that both CKAP4 and SSR1 were highly expressed in fibrocartilage chondrocytes. Finally, we validated our findings in vitro by performing real time polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) on 30 human disc samples. Our results showed that CKAP4 and SSR1 were upregulated in degenerated disc samples. Taken together, our findings suggest that CKAP4 and SSR1 have the potential to serve as disease biomarkers for IDD.
Collapse
Affiliation(s)
- Danqing Guo
- Institute of Orthopaedics and Traumatology, The 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
- Guangzhou University of Chinese Medicine the First Affiliated HospitalGuangzhou中国
| | - Min Zeng
- Pathology DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Miao Yu
- Spinal Surgery DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Jingjing Shang
- Spinal Surgery DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Jinxing Lin
- Spinal Surgery DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Lichu Liu
- Institute of Orthopaedics and Traumatology, The 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Kuangyang Yang
- Institute of Orthopaedics and Traumatology, The 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Zhenglin Cao
- Spinal Surgery DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| |
Collapse
|
8
|
Wei Y, Long S, Zhao M, Zhao J, Zhang Y, He W, Xiang L, Tan J, Ye M, Tan W, Yang Y, Yuan Q. Regulation of Cellular Signaling with an Aptamer Inhibitor to Impede Cancer Metastasis. J Am Chem Soc 2024; 146:319-329. [PMID: 38129955 DOI: 10.1021/jacs.3c09091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Tumor invasion and metastasis are the main causes of tumor progression and are the leading causes of death among cancer patients. In the present study, we propose a strategy to regulate cellular signaling with a tumor metastasis-relevant cytoskeleton-associated protein 4 (CKAP4) specific aptamer for the achievement of tumor metastasis inhibition. The designed aptamer could specifically bind to CKAP4 in the cell membranes and cytoplasm to block the internalization and recycling of α5β1 integrin, resulting in the disruption of the fibronectin-dependent cell adhesion and the weakening of the cell traction force. Moreover, the aptamer is able to impede the interaction between CKAP4 and Dickkopf1 (DKK1) to further block the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, which subsequently reduces AKT phosphorylation and inhibits the reorganization of the actin cytoskeleton in cell migration. The synergetic function of the designed aptamer in inhibiting cancer cell adhesion and blocking the PI3K signaling pathway enables efficient tumor cell metastasis suppression. The aptamer with specific targeting ability in regulating cellular signaling paves the way for cancer treatment and further provides a guiding ideology for inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Yurong Wei
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Shiyi Long
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Min Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Jingfang Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Yun Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Wang He
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Limin Xiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
9
|
Katase N, Kudo K, Ogawa K, Sakamoto Y, Nishimatsu SI, Yamauchi A, Fujita S. DKK3/CKAP4 axis is associated with advanced stage and poorer prognosis in oral cancer. Oral Dis 2023; 29:3193-3204. [PMID: 35708905 DOI: 10.1111/odi.14277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE We previously reported that dickkopf WNT signaling inhibitor 3 (DKK3) would modulate malignant potential of oral squamous cell carcinoma (OSCC) via activating Akt. Recently, cytoskeleton associated protein 4 (CKAP4) functions as receptor of DKK3, which activates Akt in esophageal squamous cell carcinoma, but its expression and function in OSCC were unclear. METHODS We studied DKK3 and CKAP4 protein expression in OSCC tissue and investigated the correlation between protein expression and clinical data. We also investigated whether antibodies (Ab) for DKK3 or CKAP4 could suppress malignant potential of the cancer cells. RESULTS DKK3/CKAP4 protein expression was observed in majority of OSCC cases and was associated with significantly higher T-stage and TNM stage. Multivariate analysis revealed that DKK3 and CKAP4 were independent prognostic biomarkers for overall survival (OS) and disease-free survival (DFS), respectively. Survival analyses revealed that DKK3-positive cases and CKAP4-positive cases showed significantly shorter OS and DFS, respectively, and that DKK3/CKAP4 double-negative cases showed significantly favorable prognosis. Both anti-DKK3Ab and anti-CKAP4Ab could suppress cancer cell proliferation, migration, and invasion. CONCLUSION DKK3/CKAP4 axis is thought to be important in OSCC, and it would be a promising therapeutic target.
Collapse
Affiliation(s)
- Naoki Katase
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kodai Kudo
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Nagasaki University Dental School, Nagasaki, Japan
| | - Kazuhiro Ogawa
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Nagasaki University Dental School, Nagasaki, Japan
| | - Yae Sakamoto
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Nagasaki University Dental School, Nagasaki, Japan
| | | | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | - Shuichi Fujita
- Department of Oral Pathology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
10
|
Mourtada J, Lony C, Nicol A, De Azevedo J, Bour C, Macabre C, Roncarati P, Ledrappier S, Schultz P, Borel C, Burgy M, Wasylyk B, Mellitzer G, Herfs M, Gaiddon C, Jung AC. A novel ΔNp63-dependent immune mechanism improves prognosis of HPV-related head and neck cancer. Front Immunol 2023; 14:1264093. [PMID: 38022675 PMCID: PMC10630910 DOI: 10.3389/fimmu.2023.1264093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Background Deconvoluting the heterogenous prognosis of Human Papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OSCC) is crucial for enhancing patient care, given its rapidly increasing incidence in western countries and the adverse side effects of OSCC treatments. Methods Transcriptomic data from HPV-positive OSCC samples were analyzed using unsupervised hierarchical clustering, and clinical relevance was evaluated using Kaplan-Meier analysis. HPV-positive OSCC cell line models were used in functional analyses and phenotypic assays to assess cell migration and invasion, response to cisplatin, and phagocytosis by macrophages in vitro. Results We found, by transcriptomic analysis of HPV-positive OSCC samples, a ΔNp63 dependent molecular signature that is associated with patient prognosis. ΔNp63 was found to act as a tumor suppressor in HPV-positive OSCC at multiple levels. It inhibits cell migration and invasion, and favors response to chemotherapy. RNA-Seq analysis uncovered an unexpected regulation of genes, such as DKK3, which are involved in immune response-signalling pathways. In agreement with these observations, we found that ΔNp63 expression levels correlate with an enhanced anti-tumor immune environment in OSCC, and ΔNp63 promotes cancer cell phagocytosis by macrophages through a DKK3/NF-κB-dependent pathway. Conclusion Our findings are the first comprehensive identification of molecular mechanisms involved in the heterogeneous prognosis of HPV-positive OSCC, paving the way for much-needed biomarkers and targeted treatment.
Collapse
Affiliation(s)
- Jana Mourtada
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Christelle Lony
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Anaïs Nicol
- Laboratoire de Radiobiologie, Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - Justine De Azevedo
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Cyril Bour
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Christine Macabre
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
- Tumorothèque du Centre Paul Strauss, Centre Paul Strauss, Strasbourg, France
| | - Patrick Roncarati
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Sonia Ledrappier
- Tumorothèque du Centre Paul Strauss, Centre Paul Strauss, Strasbourg, France
| | - Philippe Schultz
- Hôpitaux Universitaires de Strasbourg, Department of Otorhinolaryngology and Head and Neck Surgery, Strasbourg, France
| | - Christian Borel
- Department of Medical Oncology, Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - Mickaël Burgy
- Department of Medical Oncology, Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - Bohdan Wasylyk
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1258, Illkirch-Graffenstaden, France
- Centre Nationale de la Recherche Scientifique (CNRS) UMR 7104, Illkirch-Graffenstaden, France
- Université de Strasbourg, Strasbourg, France
| | - Georg Mellitzer
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Michaël Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Christian Gaiddon
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Alain C. Jung
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
- Tumorothèque du Centre Paul Strauss, Centre Paul Strauss, Strasbourg, France
| |
Collapse
|
11
|
Suchitha GP, Balaya RDA, Raju R, Keshava Prasad TS, Dagamajalu S. A network map of cytoskeleton-associated protein 4 (CKAP4) mediated signaling pathway in cancer. J Cell Commun Signal 2023; 17:1097-1104. [PMID: 36944905 PMCID: PMC10409693 DOI: 10.1007/s12079-023-00739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
Cytoskeleton-associated protein 4 (CKAP4) is a non-glycosylated type II transmembrane protein that serves as a cell surface-activated receptor. It is expressed primarily in the plasma membranes of bladder epithelial cells, type II alveolar pneumocytes, and vascular smooth muscle cells. CKAP4 is involved in various biological activities including cell proliferation, cell migration, keratinocyte differentiation, glycogenesis, fibrosis, thymic development, cardiogenesis, neuronal apoptosis, and cancer. CKAP4 has been described as a pro-tumor molecule that regulates the progression of various cancers, including lung cancer, breast cancer, esophageal squamous cell carcinoma, hepatocellular carcinoma, cervical cancer, oral cancer, bladder cancer, cholangiocarcinoma, pancreatic cancer, myeloma, renal cell carcinoma, melanoma, squamous cell carcinoma, colorectal cancer, and osteosarcoma. CKAP4 and its isoform bind to DKK1 or DKK3 (Dickkopf proteins) or antiproliferative factor (APF) and regulates several downstream signaling cascades. The CKAP4 complex plays a crucial role in regulating the signaling pathways including PI3K/AKT and MAPK1/3. Recently, CKAP4 has been recognized as a potential target for cancer therapy. Due to its biomedical importance, we integrated a network map of CKAP4. The available literature on CKAP4 signaling was manually curated according to the NetPath annotation criteria. The consolidated pathway map comprises 41 activation/inhibition events, 21 catalysis events, 35 molecular associations, 134 gene regulation events, 83 types of protein expression, and six protein translocation events. CKAP4 signaling pathway map data is freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5322 ). Generation of CKAP4 signaling pathway map.
Collapse
Affiliation(s)
- G. P. Suchitha
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | | | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| |
Collapse
|
12
|
Cai M, Wu W, Deng S, Yang Q, Wu H, Wang H, Zhang J, Feng Q, Shao J, Zeng Y, Li J. Expression of cytoskeleton-associated protein 4 is associated with poor prognosis and metastasis in nasopharyngeal carcinoma. Exp Biol Med (Maywood) 2023; 248:1085-1094. [PMID: 37208923 PMCID: PMC10581166 DOI: 10.1177/15353702231167940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/18/2022] [Indexed: 05/21/2023] Open
Abstract
Cytoskeleton-associated protein 4 (CKAP4) acts as a key transmembrane protein that connects the endoplasmic reticulum (ER) to microtubule dynamics. Researchers have not examined the roles of CKAP4 in nasopharyngeal carcinoma (NPC). The study aimed at evaluating the prognostic value and metastasis-regulating effect of CKAP4 in NPC. CKAP4 protein could be observed in 86.36% of 557 NPC specimens but not in normal nasopharyngeal epithelial tissue. According to immunoblot assays, NPC cell lines presented high CKAP4 expression relative to NP69 immortalized nasopharyngeal epithelial cells. Moreover, CKAP4 was highly expressed at the NPC tumor front and in matched liver, lung, and lymph node metastasis samples. Furthermore, high CKAP4 expression reported poor overall survival (OS) and presented a positive relevance to tumor (T) classification, recurrence, and metastasis. According to multivariate analysis, CKAP4 could independently and negatively predict patients' prognosis. Stable knockdown of CKAP4 expression in NPC cells inhibited cell migration, invasion and metastasis in vitro and in vivo. Moreover, CKAP4 promoted epithelial-mesenchymal transition (EMT) in NPC cells. CKAP4 knockdown was followed by the downregulation of the interstitial marker vimentin, and upregulation of the epithelial marker E-cadherin. In NPC tissues, high CKAP4 expression exhibited a positive relevance to vimentin expression and a negative relevance to E-cadherin expression. In conclusion, CKAP4 is an independent predictor of NPC, and CKAP4 might contribute NPC progression and metastasis, which may be involved in EMT with vimentin and E-cadherin.
Collapse
Affiliation(s)
- Manbo Cai
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Weijun Wu
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shengling Deng
- Department of Anesthesia, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Qiao Yang
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Haibiao Wu
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Haiyun Wang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jiaxing Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Qisheng Feng
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jianyong Shao
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yixin Zeng
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jianjun Li
- Department of Urological Surgical, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001,China
| |
Collapse
|
13
|
Zhang J, Xue Z, Zhao Q, Zhang K, Zhou A, Shi L, Liu Y. RNA-Sequencing Characterization of lncRNA and mRNA Functions in Septic Pig Liver Injury. Genes (Basel) 2023; 14:genes14040945. [PMID: 37107704 PMCID: PMC10137529 DOI: 10.3390/genes14040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
We assessed differentially expressed (DE) mRNAs and lncRNAs in the liver of septic pigs to explore the key factors regulating lipopolysaccharide (LPS)-induced liver injury. We identified 543 DE lncRNAs and 3642 DE mRNAs responsive to LPS. Functional enrichment analysis revealed the DE mRNAs were involved in liver metabolism and other pathways related to inflammation and apoptosis. We also found significantly upregulated endoplasmic reticulum stress (ERS)-associated genes, including the receptor protein kinase receptor-like endoplasmic reticulum kinase (PERK), the eukaryotic translation initiation factor 2α (EIF2S1), the transcription factor C/EBP homologous protein (CHOP), and activating transcription factor 4 (ATF4). In addition, we predicted 247 differentially expressed target genes (DETG) of DE lncRNAs. The analysis of protein-protein interactions (PPI) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway detected key DETGs that are involved in metabolic pathways, such as N-Acetylgalactosaminyltransferase 2 (GALNT2), argininosuccinate synthetase 1 (ASS1), and fructose 1,6-bisphosphatase 1 (FBP1). LNC_003307 was the most abundant DE lncRNA in the pig liver, with a marked upregulation of >10-fold after LPS stimulation. We identified three transcripts for this gene using the rapid amplification of the cDNA ends (RACE) technique and obtained the shortest transcript sequence. This gene likely derives from the nicotinamide N-methyltransferase (NNMT) gene in pigs. According to the identified DETGs of LNC_003307, we hypothesize that this gene regulates inflammation and endoplasmic reticulum stress in LPS-induced liver damage in pigs. This study provides a transcriptomic reference for further understanding of the regulatory mechanisms underlying septic hepatic injury.
Collapse
Affiliation(s)
- Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhihui Xue
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qingbo Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Keke Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ao Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liangyu Shi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
14
|
Luo M, Chen YJ, Xie Y, Wang QR, Xiang YN, Long NY, Yang WX, Zhao Y, Zhou JJ. Dickkopf-related protein 1/cytoskeleton-associated protein 4 signaling activation by Helicobacter pylori-induced activator protein-1 promotes gastric tumorigenesis via the PI3K/AKT/mTOR pathway. World J Gastroenterol 2022; 28:6769-6787. [PMID: 36620343 PMCID: PMC9813938 DOI: 10.3748/wjg.v28.i47.6769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/05/2022] [Accepted: 11/30/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common malignant tumor with high incidence and mortality rates globally, especially in East Asian countries. Helicobacter pylori (H. pylori) infection is a significant and independent risk factor for GC. However, its underlying mechanism of action is not fully understood. Dickkopf-related protein (DKK) 1 is a Wnt signaling antagonist, and cytoskeleton-associated protein (CKAP) 4 is a newly identified DKK1 receptor. Recent studies found that the binding of DKK1 to CAKP4 mediated the procancer signaling of DKK1 inde-pendent of Wnt signaling. We hypothesize that H. pylori-induced activation of DKK1/CKAP4 signaling contributes to the initiation and progression of GC.
AIM To investigate the interaction of H. pylori infection, DKK1 and CAKP4 in GC, as well as the underlying molecular mechanisms.
METHODS RNA sequencing was used to identify differentially expressed genes (DEGs) between H. pylori-infected and uninfected primary GC cells. Gain- and loss-of-function experiments were performed to verify the H. pylori-induced upregulation of activator protein-1 (AP-1) in GC cells. A dual-luciferase reporter assay and co-immunoprecipitation were used to determine the binding of AP-1 to the DKK1 promoter and DKK1 to CKAP4. Western blotting and immunohistochemistry detected the expression of DKK1, CKAP4, and phos-phatidylinositol 3-kinase (PI3K) pathway-related proteins in GC cells and tissues. Functional experiments and tumorigenicity in nude mice detected malignant behavior of GC cells in vitro and in vivo.
RESULTS We identified 32 DEGs between primary GC cells with and without H. pylori infection, including JUN, fos-like antigen-1 (FOSL1), and DKK1, and confirmed that the three proteins and CKAP4 were highly expressed in H. pylori-infected GC cells, H. pylori-infected gerbil gastric tissues, and human GC tissues. JUN and FOSL1 form AP-1 to transcriptionally activate DKK1 expression by binding to the DKK1 promoter. Activated DKK1 bound to CKAP4, but not the most common Wnt coreceptor low-density lipoprotein receptor-related protein 5/6, to promote GC cell growth, colony formation, migration, invasion, and xenograft tumor growth in nude mice. All these effects were driven by activation of the PI3K/AKT/mammalian target of rapamycin (mTOR) pathway. Targeting the PI3K signaling pathway by LY294002 inhibited DKK1-mediated CKAP4/PI3K signaling activity and the malignant behavior of GC cells.
CONCLUSION H. pylori induces JUN and FOSL1 expression to form AP-1, which transcriptionally activates DKK1. Binding of DKK1 to KAKP4 contributes to gastric tumorigenesis via the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Mei Luo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Yuan-Jia Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Qin-Rong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Yi-Ning Xiang
- Department of Pathology of Affiliated Hospital, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Ni-Ya Long
- Department of Neurology of Affiliated Hospital, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Wen-Xiu Yang
- Department of Pathology of Affiliated Hospital, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Jian-Jiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| |
Collapse
|
15
|
Al Shareef Z, Ershaid MNA, Mudhafar R, Soliman SSM, Kypta RM. Dickkopf-3: An Update on a Potential Regulator of the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14235822. [PMID: 36497305 PMCID: PMC9738550 DOI: 10.3390/cancers14235822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Dickkopf-3 (Dkk-3) is a member of the Dickkopf family protein of secreted Wingless-related integration site (Wnt) antagonists that appears to modulate regulators of the host microenvironment. In contrast to the clear anti-tumorigenic effects of Dkk-3-based gene therapies, the role of endogenous Dkk-3 in cancer is context-dependent, with elevated expression associated with tumor promotion and suppression in different settings. The receptors and effectors that mediate the diverse effects of Dkk-3 have not been characterized in detail, contributing to an ongoing mystery of its mechanism of action. This review compares the various functions of Dkk-3 in the tumor microenvironment, where Dkk-3 has been found to be expressed by subpopulations of fibroblasts, endothelial, and immune cells, in addition to epithelial cells. We also discuss how the activation or inhibition of Dkk-3, depending on tumor type and context, might be used to treat different types of cancers.
Collapse
Affiliation(s)
- Zainab Al Shareef
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-6505-7250
| | - Mai Nidal Asad Ershaid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rula Mudhafar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Robert M. Kypta
- CIC BioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48160 Derio, Spain
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| |
Collapse
|