1
|
Zeng Y, Yin Y, Zhou X. Insights into Microbiota-Host Crosstalk in the Intestinal Diseases Mediated by Extracellular Vesicles and Their Encapsulated MicroRNAs. Int J Mol Sci 2024; 25:13001. [PMID: 39684711 DOI: 10.3390/ijms252313001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Microorganisms that colonize the intestine communicate with the host in various ways and affect gut function and health. Extracellular vesicles (EVs), especially their encapsulated microRNAs (miRNAs), participate in the complex and precise regulation of microbiota-host interactions in the gut. These roles make miRNAs critically important for the prevention, diagnosis, and treatment of intestinal diseases. Here, we review the current knowledge on how different sources of EVs and miRNAs, including those from diets, gut microbes, and hosts, maintain gut microbial homeostasis and improve the intestinal barrier and immune function. We further highlight the roles of EVs and miRNAs in intestinal diseases, including diarrhea, inflammatory bowel disease, and colorectal cancer, thus providing a perspective for the application of EVs and miRNAs in these diseases.
Collapse
Affiliation(s)
- Yan Zeng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xihong Zhou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Amabebe E, Kumar A, Tatiparthy M, Kammala AK, Taylor BD, Menon R. Cargo exchange between human and bacterial extracellular vesicles in gestational tissues: a new paradigm in communication and immune development. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:297-328. [PMID: 39698538 PMCID: PMC11648491 DOI: 10.20517/evcna.2024.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 12/20/2024]
Abstract
Host-bacteria and bacteria-bacteria interactions can be facilitated by extracellular vesicles (EVs) secreted by both human and bacterial cells. Human and bacterial EVs (BEVs) propagate and transfer immunogenic cargos that may elicit immune responses in nearby or distant recipient cells/tissues. Hence, direct colonization of tissues by bacterial cells is not required for immunogenic stimulation. This phenomenon is important in the feto-maternal interface, where optimum tolerance between the mother and fetus is required for a successful pregnancy. Though the intrauterine cavity is widely considered sterile, BEVs from diverse sources have been identified in the placenta and amniotic cavity. These BEVs can be internalized by human cells, which may help them evade host immune surveillance. Though it appears logical, whether bacterial cells internalize human EVs or human EV cargo is yet to be determined. However, the presence of BEVs in placental tissues or amniotic cavity is believed to trigger a low-grade immune response that primes the fetal immune system for ex-utero survival, but is insufficient to disrupt the progression of pregnancy or cause immune intolerance required for adverse pregnancy events. Nevertheless, the exchange of bioactive cargos between human and BEVs, and the mechanical underpinnings and health implications of such interactions, especially during pregnancy, are still understudied. Therefore, while focusing on the feto-maternal interface, we discussed how human cells take up BEVs and whether bacterial cells take up human EVs or their cargo, the exchange of cargos between human and BEVs, host cell (feto-maternal) inflammatory responses to BEV immunogenic stimulation, and associations of these interactions with fetal immune priming and adverse reproductive outcomes such as preeclampsia and preterm birth.
Collapse
Affiliation(s)
| | | | | | | | | | - Ramkumar Menon
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
3
|
Peregrino ES, Castañeda-Casimiro J, Vázquez-Flores L, Estrada-Parra S, Wong-Baeza C, Serafín-López J, Wong-Baeza I. The Role of Bacterial Extracellular Vesicles in the Immune Response to Pathogens, and Therapeutic Opportunities. Int J Mol Sci 2024; 25:6210. [PMID: 38892397 PMCID: PMC11172497 DOI: 10.3390/ijms25116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Pathogenic bacteria have several mechanisms to evade the host's immune response and achieve an efficient infection. Bacterial extracellular vesicles (EVs) are a relevant cellular communication mechanism, since they can interact with other bacterial cells and with host cells. In this review, we focus on the EVs produced by some World Health Organization (WHO) priority Gram-negative and Gram-positive pathogenic bacteria; by spore-producing bacteria; by Mycobacterium tuberculosis (a bacteria with a complex cell wall); and by Treponema pallidum (a bacteria without lipopolysaccharide). We describe the classification and the general properties of bacterial EVs, their role during bacterial infections and their effects on the host immune response. Bacterial EVs contain pathogen-associated molecular patterns that activate innate immune receptors, which leads to cytokine production and inflammation, but they also contain antigens that induce the activation of B and T cell responses. Understanding the many effects of bacterial EVs on the host's immune response can yield new insights on the pathogenesis of clinically important infections, but it can also lead to the development of EV-based diagnostic and therapeutic strategies. In addition, since EVs are efficient activators of both the innate and the adaptive immune responses, they constitute a promising platform for vaccine development.
Collapse
Affiliation(s)
- Eliud S. Peregrino
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (E.S.P.); (J.C.-C.)
| | - Jessica Castañeda-Casimiro
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (E.S.P.); (J.C.-C.)
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Luis Vázquez-Flores
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (L.V.-F.); (C.W.-B.)
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Carlos Wong-Baeza
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (L.V.-F.); (C.W.-B.)
| | - Jeanet Serafín-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Isabel Wong-Baeza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| |
Collapse
|
4
|
Al Rubaye M, Janice J, Bjørnholt JV, Löhr IH, Sundsfjord A, Hegstad K. The first vanE-type vancomycin resistant Enterococcus faecalis isolates in Norway - phenotypic and molecular characteristics. J Glob Antimicrob Resist 2024; 36:193-199. [PMID: 38154751 DOI: 10.1016/j.jgar.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
OBJECTIVES We aimed to characterize the vanE cluster and its genetic support in the first Norwegian vanE-type isolates and assess genetic relatedness to other vanE isolates. METHODS Two vanE-type vancomycin resistant Enterococcus faecalis (vanE-VREfs) isolates (E1 and E2) recovered from the same patient 30 months apart were examined for antimicrobial susceptibility, genome sequence, vancomycin resistance induction, vanE transferability, genome mutation rate, and phylogenetic relationship to E. faecalis closed genomes and two vanE-VREfs from North America. RESULTS The ST34 E1 and E2 strains expressed low-level vancomycin resistance and susceptibility to teicoplanin. Their vanE gene clusters were part of a non-transferable Tn6202. The histidine kinase part of vanSE was expressed although a premature stop codon (E1) and insertion of a transposase (E2) truncated their vanSE gene. The vancomycin resistance phenotype in E1 was inducible while constitutive in E2. E1 showed a 125-fold higher mutation rate than E2. Variant calling showed 60 variants but nearly identical chromosomal gene content and synteny between the isolates. Their genomes also showed high similarity to another ST34 vanE-VREfs from Canada. CONCLUSION In-depth genomic analyses of the first two vanE-VREfs found in Europe identified a single chromosomal insertion site of two variants of vanE-conferring Tn6202. Single nucleotide polymorphism (SNP) and core genome multilocus sequence type (cgMLST) analyses show the genomes are different. This can be explained by the high mutation rate of E1 and acquisition of different mobile genetic elements; thus, we believe the two isolates from the same patient are genetically related. Genome similarities also suggest relatedness between the Canadian and Norwegian vanE-VREfs.
Collapse
Affiliation(s)
- Mushtaq Al Rubaye
- Research group for Host-Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jessin Janice
- Research group for Host-Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway; Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Jørgen Vildershøj Bjørnholt
- Department of Clinical Microbiology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Iren H Löhr
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Arnfinn Sundsfjord
- Research group for Host-Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway; Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host-Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway; Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
5
|
Xu J, Yu L, Ye S, Ye Z, Yang L, Xu X. Oral microbiota-host interaction: the chief culprit of alveolar bone resorption. Front Immunol 2024; 15:1254516. [PMID: 38455060 PMCID: PMC10918469 DOI: 10.3389/fimmu.2024.1254516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
There exists a bidirectional relationship between oral health and general well-being, with an imbalance in oral symbiotic flora posing a threat to overall human health. Disruptions in the commensal flora can lead to oral diseases, while systemic illnesses can also impact the oral cavity, resulting in the development of oral diseases and disorders. Porphyromonas gingivalis and Fusobacterium nucleatum, known as pathogenic bacteria associated with periodontitis, play a crucial role in linking periodontitis to accompanying systemic diseases. In periodontal tissues, these bacteria, along with their virulence factors, can excessively activate the host immune system through local diffusion, lymphatic circulation, and blood transmission. This immune response disruption contributes to an imbalance in osteoimmune mechanisms, alveolar bone resorption, and potential systemic inflammation. To restore local homeostasis, a deeper understanding of microbiota-host interactions and the immune network phenotype in local tissues is imperative. Defining the immune network phenotype in periodontal tissues offers a promising avenue for investigating the complex characteristics of oral plaque biofilms and exploring the potential relationship between periodontitis and associated systemic diseases. This review aims to provide an overview of the mechanisms underlying Porphyromonas gingivalis- and Fusobacterium nucleatum-induced alveolar bone resorption, as well as the immunophenotypes observed in host periodontal tissues during pathological conditions.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zitong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoxi Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Roy Chowdhury M, Massé E. New Perspectives on Crosstalks Between Bacterial Regulatory RNAs from Outer Membrane Vesicles and Eukaryotic Cells. Methods Mol Biol 2024; 2741:183-194. [PMID: 38217654 DOI: 10.1007/978-1-0716-3565-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Regulatory small RNAs (sRNAs) help the bacteria to survive harsh environmental conditions by posttranscriptional regulation of genes involved in various biological pathways including stress responses, homeostasis, and virulence. These sRNAs can be found carried by different membrane-bound vesicles like extracellular vesicles (EVs), membrane vesicles (MVs), or outer membrane vesicles (OMVs). OMVs provide myriad functions in bacterial cells including carrying a cargo of proteins, lipids, and nucleic acids including sRNAs. A few interesting studies have shown that these sRNAs can be transported to the host cell by membrane vesicles and can regulate the host immune system. Although there is evidence that sRNAs can be exported to host cells and sometimes can even cross the blood-brain barrier, the exact mechanism is still unknown. In this review, we investigated the new techniques implemented in various studies, to elucidate the crosstalks between bacterial cells and human immune systems by membrane vesicles carrying bacterial regulatory sRNAs.
Collapse
Affiliation(s)
- Moumita Roy Chowdhury
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
7
|
Mathew L, Kapoor S. Methods for Studying Fusion of Bacterial Extracellular Vesicles with Intact Bacteria and Host Cells. Methods Mol Biol 2024; 2843:119-136. [PMID: 39141297 DOI: 10.1007/978-1-0716-4055-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Bacterial extracellular vesicles (BEVs) are nano- or micrometer-sized membrane-bound lipid vesicles released from both Gram-negative and Gram-positive bacteria. Cellular transport, communication, pathogenesis, and host-pathogen interactions are some of the major biological processes impacted by BEVs. Among these, host-pathogen interactions and bacterial pathogenesis are emerging as highly important targetable avenues underlined by the issues of antimicrobial resistance, thus demanding novel targets and approaches to treat bacterial infections. In this aspect, the study of the interaction of BEVs with bacteria and/or host cells becomes imperative and brings the membrane fusion process to the forefront. Furthermore, membrane fusion also underscores the performance of BEVs as nano-therapeutic delivery platforms. Here, we report methods to study fusion kinetics between mycobacteria-derived extracellular vesicles, which we refer to as MEVs, and intact mycobacteria or MEVs themselves. We also discuss the isolation of MEVs and their characterization. We outline critical factors that affect fusion kinetics by MEVs. The same principle can be extended for studying fusion between BEVs and mammalian host cells important for understanding how BEVs influence host-pathogen crosstalk.
Collapse
Affiliation(s)
- Lydia Mathew
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
8
|
Nørgård MØ, Svenningsen P. Acute Kidney Injury by Ischemia/Reperfusion and Extracellular Vesicles. Int J Mol Sci 2023; 24:15312. [PMID: 37894994 PMCID: PMC10607034 DOI: 10.3390/ijms242015312] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Acute kidney injury (AKI) is often caused by ischemia-reperfusion injury (IRI). IRI significantly affects kidney metabolism, which elicits pro-inflammatory responses and kidney injury. The ischemia/reperfusion of the kidney is associated with transient high mitochondrial-derived reactive oxygen species (ROS) production rates. Excessive mitochondrial-derived ROS damages cellular components and, together with other pathogenic mechanisms, elicits a range of acute injury mechanisms that impair kidney function. Mitochondrial-derived ROS production also stimulates epithelial cell secretion of extracellular vesicles (EVs) containing RNAs, lipids, and proteins, suggesting that EVs are involved in AKI pathogenesis. This literature review focuses on how EV secretion is stimulated during ischemia/reperfusion and how cell-specific EVs and their molecular cargo may modify the IRI process. Moreover, critical pitfalls in the analysis of kidney epithelial-derived EVs are described. In particular, we will focus on how the release of kidney epithelial EVs is affected during tissue analyses and how this may confound data on cell-to-cell signaling. By increasing awareness of methodological pitfalls in renal EV research, the risk of false negatives can be mitigated. This will improve future EV data interpretation regarding EVs contribution to AKI pathogenesis and their potential as biomarkers or treatments for AKI.
Collapse
Affiliation(s)
| | - Per Svenningsen
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark;
| |
Collapse
|
9
|
Mishra RAK, Muthukaliannan GK, Rathinasabapathi P. Effects of Flavonoids and Antibiotics Combination on Preformed Biofilms and Small RNA of Staphylococcus aureus. Indian J Microbiol 2023; 63:307-316. [PMID: 37781018 PMCID: PMC10533456 DOI: 10.1007/s12088-023-01086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 07/24/2023] [Indexed: 10/03/2023] Open
Abstract
Antibiotic resistance of Staphylococcus aureus has considerably increased among non-clinical or asymptomatic individuals. The formation of biofilms denies antimicrobial access to its targets present on the surface and inside the cell. The present study tested the effect of the combination of flavonoids and antibiotics over the preformed biofilms of S. aureus. The eradication of the preformed biofilms was analyzed using the crystal violet method. It has shown that 2500 µg mL-1 Rutin and 100 µg mL-1 Erythromycin (MIC Concentration) combination efficiently reduced the growth of the cells, which were adhered to the surfaces forming the biofilms. Fluorescence microscopic analysis indicated that the Rutin and Erythromycin (MIC value) combinations could eradicate the preformed biofilm cells more efficiently than other combinations. We found that the flavonoids and antibiotics with MIC concentration show a significant effect over the preformed biofilms cells of S. aureus. In addition, the semi-quantitative real-time PCR analysis for the sRNAs under the treatment of Rutin and Erythromycin combinations showed that few small RNAs expression (SprF, SprG, ArtR, Teg49, Teg41, and RNAIII) are getting downregulated upon the treatment; but again recovers with the incubation time interval increases. Combinations have a significant effect on Teg49 where there is a very faint intensity of the band, but for other small RNAs, there is an irregular pattern on the gel image. It has been concluded that at the initial period of incubation, the combinations have an effect on all the sRNAs but once the incubation increases, the effects have been slowly decreasing. It has been concluded that the combination has been able to reduce the doubling time of S. aureus upon treatment. Whereas, the small RNAs used in the study can be further evaluated for expression profiling through qRT-PCT. Graphical abstract
Collapse
Affiliation(s)
- Rudra Awdhesh Kumar Mishra
- School of Biosciences and Technology, Vellore Institute of Technology, Katpadi, Vellore, 632014 India
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203 Tamil Nadu India
| | | | - Pasupathi Rathinasabapathi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203 Tamil Nadu India
| |
Collapse
|
10
|
Toyofuku M, Schild S, Kaparakis-Liaskos M, Eberl L. Composition and functions of bacterial membrane vesicles. Nat Rev Microbiol 2023; 21:415-430. [PMID: 36932221 DOI: 10.1038/s41579-023-00875-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 155.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/19/2023]
Abstract
Extracellular vesicles are produced by species across all domains of life, suggesting that vesiculation represents a fundamental principle of living matter. In Gram-negative bacteria, membrane vesicles (MVs) can originate either from blebs of the outer membrane or from endolysin-triggered explosive cell lysis, which is often induced by genotoxic stress. Although less is known about the mechanisms of vesiculation in Gram-positive and Gram-neutral bacteria, recent research has shown that both lysis and blebbing mechanisms also exist in these organisms. Evidence has accumulated over the past years that different biogenesis routes lead to distinct types of MV with varied structure and composition. In this Review, we discuss the different types of MV and their potential cargo packaging mechanisms. We summarize current knowledge regarding how MV composition determines their various functions including support of bacterial growth via the disposal of waste material, nutrient scavenging, export of bioactive molecules, DNA transfer, neutralization of phages, antibiotics and bactericidal functions, delivery of virulence factors and toxins to host cells and inflammatory and immunomodulatory effects. We also discuss the advantages of MV-mediated secretion compared with classic bacterial secretion systems and we introduce the concept of quantal secretion.
Collapse
Affiliation(s)
- Masanori Toyofuku
- Faculty of Life and Environmental Sciences, Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Stefan Schild
- Institute of Molecular Biosciences-Infection Biology, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, Victoria, Australia
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Rodovalho VDR, da Luz BSR, Nicolas A, Jardin J, Briard-Bion V, Folador EL, Santos AR, Jan G, Loir YL, Azevedo VADC, Guédon É. Different culture media and purification methods unveil the core proteome of Propionibacterium freudenreichii-derived extracellular vesicles. MICROLIFE 2023; 4:uqad029. [PMID: 37324655 PMCID: PMC10265600 DOI: 10.1093/femsml/uqad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Bacterial extracellular vesicles (EVs) are natural lipidic nanoparticles implicated in intercellular communication. Although EV research focused mainly on pathogens, the interest in probiotic-derived EVs is now rising. One example is Propionibacterium freudenreichii, which produces EVs with anti-inflammatory effects on human epithelial cells. Our previous study with P. freudenreichii showed that EVs purified by size exclusion chromatography (SEC) displayed variations in protein content according to bacterial growth conditions. Considering these content variations, we hypothesized that a comparative proteomic analysis of EVs recovered in different conditions would elucidate whether a representative vesicular proteome existed, possibly providing a robust proteome dataset for further analysis. Therefore, P. freudenreichii was grown in two culture media, and EVs were purified by sucrose density gradient ultracentrifugation (UC). Microscopic and size characterization confirmed EV purification, while shotgun proteomics unveiled that they carried a diverse set of proteins. A comparative analysis of the protein content of UC- and SEC-derived EVs, isolated from cultures either in UF (cow milk ultrafiltrate medium) or YEL (laboratory yeast extract lactate medium), showed that EVs from all these conditions shared 308 proteins. This EV core proteome was notably enriched in proteins related to immunomodulation. Moreover, it showed distinctive features, including highly interacting proteins, compositional biases for some specific amino acids, and other biochemical parameters. Overall, this work broadens the toolset for the purification of P. freudenreichii-derived EVs, identifies a representative vesicular proteome, and enumerates conserved features in vesicular proteins. These results hold the potential for providing candidate biomarkers of purification quality, and insights into the mechanisms of EV biogenesis and cargo sorting.
Collapse
Affiliation(s)
- Vinícius de Rezende Rodovalho
- INRAE, Institut Agro, STLO, 35042, Rennes, France
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Laboratory of Immunoinflammation, Institute of Biology, University of Campinas (UNICAMP), Campinas 13000-000, Brazil
| | - Brenda Silva Rosa da Luz
- INRAE, Institut Agro, STLO, 35042, Rennes, France
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | | | | | | - Edson Luiz Folador
- Center of Biotechnology, Department of Biotechnology, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Anderson Rodrigues Santos
- Faculty of Computer Science, Department of Computer Science, Federal University of Uberlândia, Uberlândia 38400902, Brazil
| | - Gwénaël Jan
- INRAE, Institut Agro, STLO, 35042, Rennes, France
| | - Yves Le Loir
- INRAE, Institut Agro, STLO, 35042, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Éric Guédon
- Corresponding author. INRAE, Institut Agro, STLO, 35042, Rennes, France. E-mail:
| |
Collapse
|
12
|
Hosseini-Giv N, Basas A, Hicks C, El-Omar E, El-Assaad F, Hosseini-Beheshti E. Bacterial extracellular vesicles and their novel therapeutic applications in health and cancer. Front Cell Infect Microbiol 2022; 12:962216. [PMID: 36439225 PMCID: PMC9691856 DOI: 10.3389/fcimb.2022.962216] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/20/2022] [Indexed: 10/03/2023] Open
Abstract
Bacterial cells communicate with host cells and other bacteria through the release of membrane vesicles known as bacterial extracellular vesicles (BEV). BEV are established mediators of intracellular signaling, stress tolerance, horizontal gene transfer, immune stimulation and pathogenicity. Both Gram-positive and Gram-negative bacteria produce extracellular vesicles through different mechanisms based on cell structure. BEV contain and transfer different types of cargo such as nucleic acids, proteins and lipids, which are used to interact with and affect host cells such as cytotoxicity and immunomodulation. The role of these membranous microvesicles in host communication, intra- and inter-species cell interaction and signaling, and contribution to various diseases have been well demonstrated. Due to their structure, these vesicles can be easily engineered to be utilized for clinical application, as shown with its role in vaccine therapy, and could be used as a diagnostic and cancer drug delivery tool in the future. However, like other novel therapeutic approaches, further investigation and standardization is imperative for BEV to become a routine vector or a conventional treatment method.
Collapse
Affiliation(s)
- Niloufar Hosseini-Giv
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alyza Basas
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Chloe Hicks
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Emad El-Omar
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Fatima El-Assaad
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Elham Hosseini-Beheshti
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
- The Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
da Luz BSR, de Rezende Rodovalho V, Nicolas A, Chabelskaya S, Jardin J, Briard-Bion V, Le Loir Y, de Carvalho Azevedo VA, Guédon É. Impact of Environmental Conditions on the Protein Content of Staphylococcus aureus and Its Derived Extracellular Vesicles. Microorganisms 2022; 10:1808. [PMID: 36144410 PMCID: PMC9506334 DOI: 10.3390/microorganisms10091808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus aureus, a major opportunistic pathogen in humans, produces extracellular vesicles (EVs) that are involved in cellular communication, the delivery of virulence factors, and modulation of the host immune system response. However, to date, the impact of culture conditions on the physicochemical and functional properties of S. aureus EVs is still largely unexplored. Here, we use a proteomic approach to provide a complete protein characterization of S. aureus HG003, a NCTC8325 derivative strain and its derived EVs under four growth conditions: early- and late-stationary growth phases, and in the absence and presence of a sub-inhibitory concentration of vancomycin. The HG003 EV protein composition in terms of subcellular localization, COG and KEGG categories, as well as their relative abundance are modulated by the environment and differs from that of whole-cell (WC). Moreover, the environmental conditions that were tested had a more pronounced impact on the EV protein composition when compared to the WC, supporting the existence of mechanisms for the selective packing of EV cargo. This study provides the first general picture of the impact of different growth conditions in the proteome of S. aureus EVs and its producing-cells and paves the way for future studies to understand better S. aureus EV production, composition, and roles.
Collapse
Affiliation(s)
- Brenda Silva Rosa da Luz
- INRAE, Institut Agro, STLO, F-35000 Rennes, France
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vinícius de Rezende Rodovalho
- INRAE, Institut Agro, STLO, F-35000 Rennes, France
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | | - Svetlana Chabelskaya
- BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, Inserm 1230, University of Rennes 1, 35000 Rennes, France
| | | | | | - Yves Le Loir
- INRAE, Institut Agro, STLO, F-35000 Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Éric Guédon
- INRAE, Institut Agro, STLO, F-35000 Rennes, France
| |
Collapse
|
14
|
Application of Nanomaterials in the Prevention, Detection, and Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA). Pharmaceutics 2022; 14:pharmaceutics14040805. [PMID: 35456638 PMCID: PMC9030647 DOI: 10.3390/pharmaceutics14040805] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 01/27/2023] Open
Abstract
Due to differences in geographic surveillance systems, chemical sanitization practices, and antibiotic stewardship (AS) implementation employed during the COVID-19 pandemic, many experts have expressed concerns regarding a future surge in global antimicrobial resistance (AMR). A potential beneficiary of these differences is the Gram-positive bacteria MRSA. MRSA is a bacterial pathogen with a high potential for mutational resistance, allowing it to engage various AMR mechanisms circumventing conventional antibiotic therapies and the host’s immune response. Coupled with a lack of novel FDA-approved antibiotics reaching the clinic, the onus is on researchers to develop alternative treatment tools to mitigate against an increase in pathogenic resistance. Mitigation strategies can take the form of synthetic or biomimetic nanomaterials/vesicles employed in vaccines, rapid diagnostics, antibiotic delivery, and nanotherapeutics. This review seeks to discuss the current potential of the aforementioned nanomaterials in detecting and treating MRSA.
Collapse
|
15
|
Saenz-de-Juano MD, Silvestrelli G, Weber A, Röhrig C, Schmelcher M, Ulbrich SE. Inflammatory Response of Primary Cultured Bovine Mammary Epithelial Cells to Staphylococcus aureus Extracellular Vesicles. BIOLOGY 2022; 11:biology11030415. [PMID: 35336789 PMCID: PMC8944978 DOI: 10.3390/biology11030415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary Mastitis, the inflammation of the mammary gland, is one of the most common and costly diseases worldwide, and Staphylococcus aureus (S. aureus) is among the most prevalent microorganisms that cause it. To obtain new insights into S. aureus mammary gland infections, we have isolated S. aureus extracellular vesicles to challenge in vitro primary bovine mammary epithelial cells. Despite the toxic content of the vesicles, we observed only a minor pro-inflammatory response. The latter can contribute to the explanation of how S. aureus evades mammary epithelial defence mechanisms and successfully colonizes the mammary gland. Abstract In dairy cows, Staphylococcus aureus (S. aureus) is among the most prevalent microorganisms worldwide, causing mastitis, an inflammation of the mammary gland. Production of extracellular vesicles (EVs) is a common feature of S. aureus strains, which contributes to its pathogenesis by delivering bacterial effector molecules to host cells. In the current study, we evaluated the differences between five S. aureus mastitis isolates regarding their EV production. We found that different mastitis-related S. aureus strains differ in their behaviour of shedding EVs, with M5512VL producing the largest amount of EVs containing alpha-haemolysin, a strong cytotoxic agent. We stimulated primary cultured bovine mammary epithelial cells (pbMECs) with EVs from the S. aureus strain M5512VL. After 24 h of incubation, we observed a moderate increase in gene expression of tumour necrosis factor-alpha (TNF-α) but, surprisingly, a lack of an associated pronounced pro-inflammatory response. Our results contribute to understanding the damaging nature of S. aureus in its capacity to effectively affect mammary epithelial cells.
Collapse
Affiliation(s)
- Mara D. Saenz-de-Juano
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland; (M.D.S.-d.-J.); (G.S.); (A.W.)
| | - Giulia Silvestrelli
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland; (M.D.S.-d.-J.); (G.S.); (A.W.)
| | - Andres Weber
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland; (M.D.S.-d.-J.); (G.S.); (A.W.)
| | - Christian Röhrig
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland; (C.R.); (M.S.)
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland; (C.R.); (M.S.)
| | - Susanne E. Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland; (M.D.S.-d.-J.); (G.S.); (A.W.)
- Correspondence:
| |
Collapse
|
16
|
Roncarati D, Scarlato V, Vannini A. Targeting of Regulators as a Promising Approach in the Search for Novel Antimicrobial Agents. Microorganisms 2022; 10:microorganisms10010185. [PMID: 35056634 PMCID: PMC8777881 DOI: 10.3390/microorganisms10010185] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Since the discovery of penicillin in the first half of the last century, antibiotics have become the pillars of modern medicine for fighting bacterial infections. However, pathogens resistant to antibiotic treatment have increased in recent decades, and efforts to discover new antibiotics have decreased. As a result, it is becoming increasingly difficult to treat bacterial infections successfully, and we look forward to more significant efforts from both governments and the scientific community to research new antibacterial drugs. This perspective article highlights the high potential of bacterial transcriptional and posttranscriptional regulators as targets for developing new drugs. We highlight some recent advances in the search for new compounds that inhibit their biological activity and, as such, appear very promising for treating bacterial infections.
Collapse
Affiliation(s)
- Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
- Correspondence: (D.R.); (V.S.); (A.V.)
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
- Correspondence: (D.R.); (V.S.); (A.V.)
| | - Andrea Vannini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
- Correspondence: (D.R.); (V.S.); (A.V.)
| |
Collapse
|
17
|
Lee Y, Cho HS, Choi M, Prathap S, Soundrarajan N, Choi Y, Song H, Hong K, Park C. Comparison of DNA/RNA yield and integrity between PMAP36-mediated and other bacterial lysis methods. J Microbiol Methods 2021; 193:106396. [PMID: 34921868 DOI: 10.1016/j.mimet.2021.106396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022]
Abstract
Currently, several methods are available for the isolation of bacterial DNA and RNA. However, the diversity and complexity of cell envelope structures limit their efficiency depending on the target bacterial species. In this study, we compared the differences in yield and integrity of RNA prepared from four gram-negative and six gram-positive bacterial species using bead-beating, bacteriolytic protein, and PMAP36-vortexing methods. Similarly, we also compared the efficiency of DNA extraction from Staphylococcus aureus. Physical disruption of bacterial cells showed versatility in breaking cells against all tested species; however, a decrease in the integrity of isolated DNA and RNA was observed. Among membranolytic proteins, PMAP36 showed the most promising results, in terms of both the yield and integrity of the prepared nucleic acids. Our results show that each method has inherent advantages and disadvantages depending on its application. Therefore, the characteristics of each method and target species should be considered before the extraction of bacterial DNA and RNA.
Collapse
Affiliation(s)
- Yunjung Lee
- Department of stem cell and regenerative biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Hye-Sun Cho
- Department of stem cell and regenerative biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Munjeong Choi
- Department of stem cell and regenerative biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Somasundaram Prathap
- Department of stem cell and regenerative biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | | | - Youngsok Choi
- Department of stem cell and regenerative biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Hyuk Song
- Department of stem cell and regenerative biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Kwonho Hong
- Department of stem cell and regenerative biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea
| | - Chankyu Park
- Department of stem cell and regenerative biotechnology, Konkuk University, Gwangjin-gu, Seoul, South Korea.
| |
Collapse
|
18
|
Briaud P, Frey A, Marino EC, Bastock RA, Zielinski RE, Wiemels RE, Keogh RA, Murphy ER, Shaw LN, Carroll RK. Temperature Influences the Composition and Cytotoxicity of Extracellular Vesicles in Staphylococcus aureus. mSphere 2021; 6:e0067621. [PMID: 34612674 PMCID: PMC8510519 DOI: 10.1128/msphere.00676-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a pathogenic bacterium but also a commensal of skin and anterior nares in humans. As S. aureus transits from skins/nares to inside the human body, it experiences changes in temperature. The production and content of S. aureus extracellular vesicles (EVs) have been increasingly studied over the past few years, and EVs are increasingly being recognized as important to the infectious process. Nonetheless, the impact of temperature variation on S. aureus EVs has not been studied in detail, as most reports that investigate EV cargoes and host cell interactions are performed using vesicles produced at 37°C. Here, we report that EVs in S. aureus differ in size and protein/RNA cargo depending on the growth temperature used. We demonstrate that the temperature-dependent regulation of vesicle production in S. aureus is mediated by the alpha phenol-soluble modulin peptides (αPSMs). Through proteomic analysis, we observed increased packaging of virulence factors at 40°C, whereas the EV proteome has greater diversity at 34°C. Similar to the protein content, we perform transcriptomic analysis and demonstrate that the RNA cargo also is impacted by temperature. Finally, we demonstrate greater αPSM- and alpha-toxin-mediated erythrocyte lysis with 40°C EVs, but 34°C EVs are more cytotoxic toward THP-1 cells. Together, our study demonstrates that small temperature variations have great impact on EV biogenesis and shape the interaction with host cells. IMPORTANCE Extracellular vesicles (EVs) are lipid bilayer spheres that contain proteins, nucleic acids, and lipids secreted by bacteria. They are involved in Staphylococcus aureus infections, as they package virulence factors and deliver their contents inside host cells. The impact of temperature variations experienced by S. aureus during the infectious process on EVs is unknown. Here, we demonstrate the importance of temperature in vesicle production and packaging. High temperatures promote packaging of virulence factors and increase the protein and lipid concentration but reduce the overall RNA abundance and protein diversity in EVs. The importance of temperature changes is highlighted by the fact that EVs produced at low temperature are more toxic toward macrophages, whereas EVs produced at high temperature display more hemolysis toward erythrocytes. Our research brings new insights into temperature-dependent vesiculation and interaction with the host during S. aureus transition from colonization to virulence.
Collapse
Affiliation(s)
- Paul Briaud
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Andrew Frey
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Emily C. Marino
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Raeven A. Bastock
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | | | | | - Rebecca A. Keogh
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Erin R. Murphy
- Heritage College of Osteopathic Medicine, Department of Biomedical Sciences, Ohio University, Athens, Ohio, USA
- Infectious and Tropical Disease Institute, Ohio University, Athens, Ohio, USA
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Ronan K. Carroll
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
- Infectious and Tropical Disease Institute, Ohio University, Athens, Ohio, USA
| |
Collapse
|
19
|
Extracellular Vesicles in Airway Homeostasis and Pathophysiology. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11219933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The epithelial–mesenchymal trophic unit (EMTU) is a morphofunctional entity involved in the maintenance of the homeostasis of airways as well as in the pathogenesis of several diseases, including asthma and chronic obstructive pulmonary disease (COPD). The “muco-microbiotic layer” (MML) is the innermost layer of airways made by microbiota elements (bacteria, viruses, archaea and fungi) and the surrounding mucous matrix. The MML homeostasis is also crucial for maintaining the healthy status of organs and its alteration is at the basis of airway disorders. Nanovesicles produced by EMTU and MML elements are probably the most important tool of communication among the different cell types, including inflammatory ones. How nanovesicles produced by EMTU and MML may affect the airway integrity, leading to the onset of asthma and COPD, as well as their putative use in therapy will be discussed here.
Collapse
|
20
|
Felden B, Augagneur Y. Diversity and Versatility in Small RNA-Mediated Regulation in Bacterial Pathogens. Front Microbiol 2021; 12:719977. [PMID: 34447363 PMCID: PMC8383071 DOI: 10.3389/fmicb.2021.719977] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial gene expression is under the control of a large set of molecules acting at multiple levels. In addition to the transcription factors (TFs) already known to be involved in global regulation of gene expression, small regulatory RNAs (sRNAs) are emerging as major players in gene regulatory networks, where they allow environmental adaptation and fitness. Developments in high-throughput screening have enabled their detection in the entire bacterial kingdom. These sRNAs influence a plethora of biological processes, including but not limited to outer membrane synthesis, metabolism, TF regulation, transcription termination, virulence, and antibiotic resistance and persistence. Almost always noncoding, they regulate target genes at the post-transcriptional level, usually through base-pair interactions with mRNAs, alone or with the help of dedicated chaperones. There is growing evidence that sRNA-mediated mechanisms of actions are far more diverse than initially thought, and that they go beyond the so-called cis- and trans-encoded classifications. These molecules can be derived and processed from 5' untranslated regions (UTRs), coding or non-coding sequences, and even from 3' UTRs. They usually act within the bacterial cytoplasm, but recent studies showed sRNAs in extracellular vesicles, where they influence host cell interactions. In this review, we highlight the various functions of sRNAs in bacterial pathogens, and focus on the increasing examples of widely diverse regulatory mechanisms that might compel us to reconsider what constitute the sRNA.
Collapse
Affiliation(s)
- Brice Felden
- Inserm, Bacterial Regulatory RNAs and Medicine (BRM) - UMR_S 1230, Rennes, France
| | - Yoann Augagneur
- Inserm, Bacterial Regulatory RNAs and Medicine (BRM) - UMR_S 1230, Rennes, France
| |
Collapse
|
21
|
Extracellular Vesicles and Host-Pathogen Interactions: A Review of Inter-Kingdom Signaling by Small Noncoding RNA. Genes (Basel) 2021; 12:genes12071010. [PMID: 34208860 PMCID: PMC8303656 DOI: 10.3390/genes12071010] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
The focus of this brief review is to describe the role of noncoding regulatory RNAs, including short RNAs (sRNA), transfer RNA (tRNA) fragments and microRNAs (miRNA) secreted in extracellular vesicles (EVs), in inter-kingdom communication between bacteria and mammalian (human) host cells. Bacteria secrete vesicles that contain noncoding regulatory RNAs, and recent studies have shown that the bacterial vesicles fuse with and deliver regulatory RNAs to host cells, and similar to eukaryotic miRNAs, regulatory RNAs modulate the host immune response to infection. Recent studies have also demonstrated that mammalian cells secrete EVs containing miRNAs that regulate the gut microbiome, biofilm formation and the bacterial response to antibiotics. Thus, as evidence accumulates it is becoming clear that the secretion of noncoding regulatory RNAs and miRNAs in extracellular vesicles is an important mechanism of bidirectional communication between bacteria and mammalian (human) host cells. However, additional research is necessary to elucidate how noncoding regulatory RNAs and miRNA secreted in extracellular vesicles mediate inter-kingdom communication.
Collapse
|
22
|
Li Z, Stanton BA. Transfer RNA-Derived Fragments, the Underappreciated Regulatory Small RNAs in Microbial Pathogenesis. Front Microbiol 2021; 12:687632. [PMID: 34079534 PMCID: PMC8166272 DOI: 10.3389/fmicb.2021.687632] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/26/2021] [Indexed: 01/20/2023] Open
Abstract
In eukaryotic organisms, transfer RNA (tRNA)-derived fragments have diverse biological functions. Considering the conserved sequences of tRNAs, it is not surprising that endogenous tRNA fragments in bacteria also play important regulatory roles. Recent studies have shown that microbes secrete extracellular vesicles (EVs) containing tRNA fragments and that the EVs deliver tRNA fragments to eukaryotic hosts where they regulate gene expression. Here, we review the literature describing microbial tRNA fragment biogenesis and how the fragments secreted in microbial EVs suppress the host immune response, thereby facilitating chronic infection. Also, we discuss knowledge gaps and research challenges for understanding the pathogenic roles of microbial tRNA fragments in regulating the host response to infection.
Collapse
Affiliation(s)
- Zhongyou Li
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| |
Collapse
|
23
|
Bitto NJ, Cheng L, Johnston EL, Pathirana R, Phan TK, Poon IKH, O'Brien‐Simpson NM, Hill AF, Stinear TP, Kaparakis‐Liaskos M. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. J Extracell Vesicles 2021; 10:e12080. [PMID: 33815695 PMCID: PMC8015888 DOI: 10.1002/jev2.12080] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Gram-positive bacteria ubiquitously produce membrane vesicles (MVs), and although they contribute to biological functions, our knowledge regarding their composition and immunogenicity remains limited. Here we examine the morphology, contents and immunostimulatory functions of MVs produced by three Staphylococcus aureus strains; a methicillin resistant clinical isolate, a methicillin sensitive clinical isolate and a laboratory-adapted strain. We observed differences in the number and morphology of MVs produced by each strain and showed that they contain microbe-associated molecular patterns (MAMPs) including protein, nucleic acids and peptidoglycan. Analysis of MV-derived RNA indicated the presence of small RNA (sRNA). Furthermore, we detected variability in the amount and composition of protein, nucleic acid and peptidoglycan cargo carried by MVs from each S. aureus strain. S. aureus MVs activated Toll-like receptor (TLR) 2, 7, 8, 9 and nucleotide-binding oligomerization domain containing protein 2 (NOD2) signalling and promoted cytokine and chemokine release by epithelial cells, thus identifying that MV-associated MAMPs including DNA, RNA and peptidoglycan are detected by pattern recognition receptors (PRRs). Moreover, S. aureus MVs induced the formation of and colocalized with autophagosomes in epithelial cells, while inhibition of lysosomal acidification using bafilomycin A1 resulted in accumulation of autophagosomal puncta that colocalized with MVs, revealing the ability of the host to degrade MVs via autophagy. This study reveals the ability of DNA, RNA and peptidoglycan associated with MVs to activate PRRs in host epithelial cells, and their intracellular degradation via autophagy. These findings advance our understanding of the immunostimulatory roles of Gram-positive bacterial MVs in mediating pathogenesis, and their intracellular fate within the host.
Collapse
Affiliation(s)
- Natalie J. Bitto
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| | - Lesley Cheng
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Ella L. Johnston
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| | - Rishi Pathirana
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| | - Thanh Kha Phan
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Ivan K. H. Poon
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Neil M. O'Brien‐Simpson
- Centre for Oral Health ResearchMelbourne Dental SchoolBio21 InstituteThe University of MelbourneParkvilleVictoria3010Australia
| | - Andrew F. Hill
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Timothy P. Stinear
- Department of Microbiology and ImmunologyDoherty InstituteUniversity of MelbourneParkvilleVictoria3010Australia
| | - Maria Kaparakis‐Liaskos
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| |
Collapse
|
24
|
Luz BSRD, Nicolas A, Chabelskaya S, Rodovalho VDR, Le Loir Y, Azevedo VADC, Felden B, Guédon E. Environmental Plasticity of the RNA Content of Staphylococcus aureus Extracellular Vesicles. Front Microbiol 2021; 12:634226. [PMID: 33776967 PMCID: PMC7990786 DOI: 10.3389/fmicb.2021.634226] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
The roles of bacterial extracellular vesicles (EVs) in cell-to-cell signaling are progressively being unraveled. These membranous spheres released by many living cells carry various macromolecules, some of which influence host-pathogen interactions. Bacterial EVs contain RNA, which may serve in communicating with their infected hosts. Staphylococcus aureus, an opportunistic human and animal pathogen, produces EVs whose RNA content is still poorly characterized. Here, we investigated in depth the RNA content of S. aureus EVs. A high-throughput RNA sequencing approach identified RNAs in EVs produced by the clinical S. aureus strain HG003 under different environmental conditions: early- and late-stationary growth phases, and presence or absence of a sublethal vancomycin concentration. On average, sequences corresponding to 78.0% of the annotated transcripts in HG003 genome were identified in HG003 EVs. However, only ~5% of them were highly covered by reads (≥90% coverage) indicating that a large fraction of EV RNAs, notably mRNAs and sRNAs, were fragmented in EVs. According to growth conditions, from 86 to 273 highly covered RNAs were identified into the EVs. They corresponded to 286 unique RNAs, including 220 mRNAs. They coded for numerous virulence-associated factors (hld encoded by the multifunctional sRNA RNAIII, agrBCD, psmβ1, sbi, spa, and isaB), ribosomal proteins, transcriptional regulators, and metabolic enzymes. Twenty-eight sRNAs were also detected, including bona fide RsaC. The presence of 22 RNAs within HG003 EVs was confirmed by reverse transcription quantitative PCR (RT-qPCR) experiments. Several of these 286 RNAs were shown to belong to the same transcriptional units in S. aureus. Both nature and abundance of the EV RNAs were dramatically affected depending on the growth phase and the presence of vancomycin, whereas much less variations were found in the pool of cellular RNAs of the parent cells. Moreover, the RNA abundance pattern differed between EVs and EV-producing cells according to the growth conditions. Altogether, our findings show that the environment shapes the RNA cargo of the S. aureus EVs. Although the composition of EVs is impacted by the physiological state of the producing cells, our findings suggest a selective packaging of RNAs into EVs, as proposed for EV protein cargo. Our study shedds light to the possible roles of potentially functional RNAs in S. aureus EVs, notably in host-pathogen interactions.
Collapse
Affiliation(s)
- Brenda Silva Rosa Da Luz
- INRAE, Institut Agro, STLO, Rennes, France.,Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Svetlana Chabelskaya
- BRM [Bacterial Regulatory RNAs and Medicine] UMR_S 1230, University of Rennes, Inserm, Rennes, France
| | - Vinícius de Rezende Rodovalho
- INRAE, Institut Agro, STLO, Rennes, France.,Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Brice Felden
- BRM [Bacterial Regulatory RNAs and Medicine] UMR_S 1230, University of Rennes, Inserm, Rennes, France
| | | |
Collapse
|