1
|
Wang Z, Niu D. To explore the prognostic characteristics of colon cancer based on tertiary lymphoid structure-related genes and reveal the characteristics of tumor microenvironment and drug prediction. Sci Rep 2024; 14:13555. [PMID: 38867070 PMCID: PMC11169531 DOI: 10.1038/s41598-024-64308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
In order to construct a prognostic evaluation model of TLS features in COAD and better realize personalized precision medicine in COAD. Colon adenocarcinoma (COAD) is a common malignant tumor of the digestive system. At present, there is no effective prognostic marker to predict the prognosis of patients. Tertiary lymphoid structure (TLS) affects cancer progression by regulating immune microenvironment. Mining COAD biomarkers based on TLS-related genes helps to improve the prognosis of patients. In order to construct a prognostic evaluation model of TLS features in COAD and better realize personalized precision medicine in COAD. The mRNA expression data and clinical information of COAD and adjacent tissues were downloaded from the Cancer Genome Atlas database. The differentially expressed TLS-related genes of COAD relative to adjacent tissues were obtained by differential analysis. TLS gene co-expression analysis was used to mine genes highly related to TLS, and the intersection of the two was used to obtain candidate genes. Univariate, LASSO, and multivariate Cox regression analysis were performed on candidate genes to screen prognostic markers to construct a risk assessment model. The differences of immune characteristics were evaluated by ESTIMATE, ssGSEA and CIBERSORT in high and low risk groups of prognostic model. The difference of genomic mutation between groups was evaluated by tumor mutation burden score. Screening small molecule drugs through the GDSC library. Finally, a nomogram was drawn to evaluate the clinical value of the prognostic model. Seven TLS-related genes ADAM8, SLC6A1, PAXX, RIMKLB, PTH1R, CD1B, and MMP10 were screened to construct a prognostic model. Survival analysis showed that patients in the high-risk group had significantly lower overall survival rates. Immune microenvironment analysis showed that patients in the high-risk group had higher immune indicators, indicating higher immunity. The genomic mutation patterns of the high-risk and low-risk groups were significantly different, especially the KRAS mutation frequency was significantly higher in the high-risk group. Drug sensitivity analysis showed that the low-risk group was more sensitive to Erlotinib, Savolitinib and VE _ 822, which may be used as a potential drug for COAD treatment. Finally, the nomogram constructed by pathological features combined with RiskScore can accurately evaluate the prognosis of COAD patients. This study constructed and verified a TLS model that can predict COAD. More importantly, it provides a reference standard for guiding the prognosis and immunotherapy of COAD patients.
Collapse
Affiliation(s)
- Zhanmei Wang
- Department of Oncology, Qilu Hospital of Shandong University, Qingdao, 266000, China
| | - Dongguang Niu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao City, 266000, Shandong Province, China.
| |
Collapse
|
2
|
Shah ET, Molloy C, Gough M, Kryza T, Samuel SG, Tucker A, Bhatia M, Ferguson G, Heyman R, Vora S, Monkman J, Bolderson E, Kulasinghe A, He Y, Gabrielli B, Hooper JD, Richard DJ, O'Byrne KJ, Adams MN. Inhibition of Aurora B kinase (AURKB) enhances the effectiveness of 5-fluorouracil chemotherapy against colorectal cancer cells. Br J Cancer 2024; 130:1196-1205. [PMID: 38287178 PMCID: PMC10991355 DOI: 10.1038/s41416-024-02584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND 5-Fluorouracil (5-FU) remains a core component of systemic therapy for colorectal cancer (CRC). However, response rates remain low, and development of therapy resistance is a primary issue. Combinatorial strategies employing a second agent to augment the therapeutic effect of chemotherapy is predicted to reduce the incidence of treatment resistance and increase the durability of response to therapy. METHODS Here, we employed quantitative proteomics approaches to identify novel druggable proteins and molecular pathways that are deregulated in response to 5-FU, which might serve as targets to improve sensitivity to chemotherapy. Drug combinations were evaluated using 2D and 3D CRC cell line models and an ex vivo culture model of a patient-derived tumour. RESULTS Quantitative proteomics identified upregulation of the mitosis-associated protein Aurora B (AURKB), within a network of upregulated proteins, in response to a 24 h 5-FU treatment. In CRC cell lines, AURKB inhibition with the dihydrogen phosphate prodrug AZD1152, markedly improved the potency of 5-FU in 2D and 3D in vitro CRC models. Sequential treatment with 5-FU then AZD1152 also enhanced the response of a patient-derived CRC cells to 5-FU in ex vivo cultures. CONCLUSIONS AURKB inhibition may be a rational approach to augment the effectiveness of 5-FU chemotherapy in CRC.
Collapse
Affiliation(s)
- Esha T Shah
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Christopher Molloy
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Madeline Gough
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Thomas Kryza
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Selwin G Samuel
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Amos Tucker
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Maneet Bhatia
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Genevieve Ferguson
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Rebecca Heyman
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Shivam Vora
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - James Monkman
- Frazer Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Emma Bolderson
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Yaowu He
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Brian Gabrielli
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - John D Hooper
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Derek J Richard
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Kenneth J O'Byrne
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Cancer Services, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Mark N Adams
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
3
|
Huang L, Zhang J, Songyang Z, Xiong Y. Identification and Validation of eRNA as a Prognostic Indicator for Cervical Cancer. BIOLOGY 2024; 13:227. [PMID: 38666838 PMCID: PMC11048606 DOI: 10.3390/biology13040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
The survival of CESC patients is closely related to the expression of enhancer RNA (eRNA). In this work, we downloaded eRNA expression, clinical, and gene expression data from the TCeA and TCGA portals. A total of 7936 differentially expressed eRNAs were discovered by limma analysis, and the relationship between these eRNAs and survival was analyzed by univariate Cox hazard analysis, LASSO regression, and multivariate Cox hazard analysis to obtain an 8-eRNA model. Risk score heat maps, KM curves, ROC analysis, robustness analysis, and nomograms further indicate that this 8-eRNA model is a novel indicator with high prognostic performance independent of clinicopathological classification. The model divided patients into high-risk and low-risk groups, compared pathway diversity between the two groups through GSEA analysis, and provided potential therapeutic agents for high-risk patients.
Collapse
Affiliation(s)
- Lijing Huang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (L.H.); (J.Z.)
| | - Jingkai Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (L.H.); (J.Z.)
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (L.H.); (J.Z.)
- Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuanyan Xiong
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (L.H.); (J.Z.)
| |
Collapse
|
4
|
Shang Z, Lai Y, Cheng H. DPP2/7 is a Potential Predictor of Prognosis and Target in Immunotherapy in Colorectal Cancer: An Integrative Multi-omics Analysis. Comb Chem High Throughput Screen 2024; 27:1642-1660. [PMID: 38454764 DOI: 10.2174/0113862073290831240229060932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) ranks among the leading causes of cancerrelated deaths. OBJECTIVE This study aimed to illuminate the relationship between DPP7 (also known as DPP2) and CRC through a combination of bioinformatics and experimental methodologies. METHODS A multi-dimensional bioinformatic analysis on DPP7 was executed, covering its expression, survival implications, clinical associations, functional roles, immune interactions, and drug sensitivities. Experimental validations involved siRNA-mediated DPP7 knockdown and various cellular assays. RESULTS Data from the Cancer Genome Atlas (TCGA) identified high DPP7 expression in solid CRC tumors, with elevated levels adversely affecting patient prognosis. A shift from the N0 to the N2 stage in CRC was associated with increased DPP7 expression. Functional insights indicated the involvement of DPP7 in cancer progression, particularly in extracellular matrix disassembly. Immunological analyses showed its association with immunosuppressive entities, and in vitro experiments in CRC cell lines underscored its oncogenic attributes. CONCLUSION DPP7 could serve as a CRC prognosis marker, functioning as an oncogene and representing a potential immunotherapeutic target.
Collapse
Affiliation(s)
- Zhihao Shang
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Yueyang Lai
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Haibo Cheng
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| |
Collapse
|
5
|
Liao L, Deng L, Zhang Y, Yang S, Andriani L, Hu S, Zhang F, Shao Z, Li D. C9orf142 transcriptionally activates MTBP to drive progression and resistance to CDK4/6 inhibitor in triple-negative breast cancer. Clin Transl Med 2023; 13:e1480. [PMID: 38009308 PMCID: PMC10679971 DOI: 10.1002/ctm2.1480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) presents the most challenging subtype of all breast cancers because of its aggressive clinical phenotypes and absence of viable therapy targets. In order to identify effective molecular targets for treating patients with TNBC, we conducted an integration analysis of our recently published TNBC dataset of quantitative proteomics and RNA-Sequencing, and found the abnormal upregulation of chromosome 9 open reading frame 142 (C9orf142) in TNBC. However, the functional roles of C9orf142 in TNBC are unclear. METHODS In vitro and in vivo functional experiments were performed to assess potential roles of C9orf142 in TNBC. Immunoblotting, real-time quantitative polymerase chain reaction (RT-qPCR), and immunofluorescent staining were used to investigate the expression levels of C9orf142 and its downstream molecules. The molecular mechanisms underlying C9orf142-regulated mouse double minute 2 (MDM2)-binding protein (MTBP) were determined by chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. RESULTS In TNBC tissues and metastatic lymph nodes, we observed that C9orf142 exhibited abnormal up-regulation, and its elevated expression was indicative of unfavorable prognosis for TNBC patients. Both in vitro and in vivo functional experiments demonstrated that C9orf142 accelerated TNBC growth and metastasis. Further mechanism exploration revealed that C9orf142 transcriptionally activated MTBP, thereby regulating its downstream MDM2/p53/p21 signaling axis and the transition of cell cycle from G1 to S phase. Functional rescue experiment demonstrated that knockdown of MTBP attenuated C9orf142-mediated tumour growth and metastasis. Furthermore, depletion of C9orf142 remarkably increased the responsiveness of TNBC cells to CDK4/6 inhibitor abemaciclib. CONCLUSIONS Together, these findings unveil a previously unrecognized effect of C9orf142 in TNBC progression and responsiveness to CDK4/6 inhibitor, and emphasize C9orf142 as a promising intervention target for TNBC treatment.
Collapse
Affiliation(s)
- Li Liao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ling Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Yin‐Ling Zhang
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Shao‐Ying Yang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Lisa Andriani
- Department of Breast Surgery, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
| | - Shu‐Yuan Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Fang‐Lin Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhi‐Min Shao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Breast Surgery, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Da‐Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Breast Surgery, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
6
|
Sun R, Ge W, Zhu Y, Sayad A, Luna A, Lyu M, Liang S, Tobalina L, Rajapakse VN, Yu C, Zhang H, Fang J, Wu F, Xie H, Saez-Rodriguez J, Ying H, Reinhold WC, Sander C, Pommier Y, Neel BG, Aebersold R, Guo T. Proteomic Dynamics of Breast Cancer Cell Lines Identifies Potential Therapeutic Protein Targets. Mol Cell Proteomics 2023; 22:100602. [PMID: 37343696 PMCID: PMC10392136 DOI: 10.1016/j.mcpro.2023.100602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
Treatment and relevant targets for breast cancer (BC) remain limited, especially for triple-negative BC (TNBC). We identified 6091 proteins of 76 human BC cell lines using data-independent acquisition (DIA). Integrating our proteomic findings with prior multi-omics datasets, we found that including proteomics data improved drug sensitivity predictions and provided insights into the mechanisms of action. We subsequently profiled the proteomic changes in nine cell lines (five TNBC and four non-TNBC) treated with EGFR/AKT/mTOR inhibitors. In TNBC, metabolism pathways were dysregulated after EGFR/mTOR inhibitor treatment, while RNA modification and cell cycle pathways were affected by AKT inhibitor. This systematic multi-omics and in-depth analysis of the proteome of BC cells can help prioritize potential therapeutic targets and provide insights into adaptive resistance in TNBC.
Collapse
Affiliation(s)
- Rui Sun
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Weigang Ge
- Bioinformatics Department, Westlake Omics (Hangzhou) Biotechnology Co, Ltd, Hangzhou, Zhejiang, China
| | - Yi Zhu
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Azin Sayad
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA
| | - Augustin Luna
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mengge Lyu
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shuang Liang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Luis Tobalina
- Bioinformatics and Data Science, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chenhuan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Huanhuan Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Jie Fang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Fang Wu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Hui Xie
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Institute for Computational Biomedicine, Heidelberg University Hospital, BioQuant, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Huazhong Ying
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - William C Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chris Sander
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Benjamin G Neel
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA.
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland.
| | - Tiannan Guo
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Seif-El-Dahan M, Kefala-Stavridi A, Frit P, Hardwick SW, Chirgadze DY, Maia De Oliviera T, Britton S, Barboule N, Bossaert M, Pandurangan AP, Meek K, Blundell TL, Ropars V, Calsou P, Charbonnier JB, Chaplin AK. PAXX binding to the NHEJ machinery explains functional redundancy with XLF. SCIENCE ADVANCES 2023; 9:eadg2834. [PMID: 37256950 PMCID: PMC10413649 DOI: 10.1126/sciadv.adg2834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/03/2023] [Indexed: 06/02/2023]
Abstract
Nonhomologous end joining is a critical mechanism that repairs DNA double-strand breaks in human cells. In this work, we address the structural and functional role of the accessory protein PAXX [paralog of x-ray repair cross-complementing protein 4 (XRCC4) and XRCC4-like factor (XLF)] in this mechanism. Here, we report high-resolution cryo-electron microscopy (cryo-EM) and x-ray crystallography structures of the PAXX C-terminal Ku-binding motif bound to Ku70/80 and cryo-EM structures of PAXX bound to two alternate DNA-dependent protein kinase (DNA-PK) end-bridging dimers, mediated by either Ku80 or XLF. We identify residues critical for the Ku70/PAXX interaction in vitro and in cells. We demonstrate that PAXX and XLF can bind simultaneously to the Ku heterodimer and act as structural bridges in alternate forms of DNA-PK dimers. Last, we show that engagement of both proteins provides a complementary advantage for DNA end synapsis and end joining in cells.
Collapse
Affiliation(s)
- Murielle Seif-El-Dahan
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Antonia Kefala-Stavridi
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Philippe Frit
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Steven W. Hardwick
- Cryo-EM Facility, Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dima Y. Chirgadze
- Cryo-EM Facility, Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nadia Barboule
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Madeleine Bossaert
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arun Prasad Pandurangan
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Amanda K. Chaplin
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
8
|
Tang J, Li Z, Wu Q, Irfan M, Li W, Liu X. Role of Paralogue of XRCC4 and XLF in DNA Damage Repair and Cancer Development. Front Immunol 2022; 13:852453. [PMID: 35309348 PMCID: PMC8926060 DOI: 10.3389/fimmu.2022.852453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 01/01/2023] Open
Abstract
Non-homologous end joining (cNHEJ) is a major pathway to repair double-strand breaks (DSBs) in DNA. Several core cNHEJ are involved in the progress of the repair such as KU70 and 80, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Artemis, X-ray repair cross-complementing protein 4 (XRCC4), DNA ligase IV, and XRCC4-like factor (XLF). Recent studies have added a number of new proteins during cNHEJ. One of the newly identified proteins is Paralogue of XRCC4 and XLF (PAXX), which acts as a scaffold that is required to stabilize the KU70/80 heterodimer at DSBs sites and promotes the assembly and/or stability of the cNHEJ machinery. PAXX plays an essential role in lymphocyte development in XLF-deficient background, while XLF/PAXX double-deficient mouse embryo died before birth. Emerging evidence also shows a connection between the expression levels of PAXX and cancer development in human patients, indicating a prognosis role of the protein. This review will summarize and discuss the function of PAXX in DSBs repair and its potential role in cancer development.
Collapse
Affiliation(s)
- Jialin Tang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhongxia Li
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qiong Wu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Muhammad Irfan
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Weili Li
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xiangyu Liu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China.,Department of Hematology, The Second People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
9
|
Ray U, Raghavan SC. Understanding the DNA double-strand break repair and its therapeutic implications. DNA Repair (Amst) 2021; 106:103177. [PMID: 34325086 DOI: 10.1016/j.dnarep.2021.103177] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Repair of DNA double-strand breaks (DSBs) and its regulation are tightly integrated inside cells. Homologous recombination, nonhomologous end joining and microhomology mediated end joining are three major DSB repair pathways in mammalian cells. Targeting proteins associated with these repair pathways using small molecule inhibitors can prove effective in tumors, especially those with deregulated repair. Sensitization of cancer to current age therapy including radio and chemotherapy, using small molecule inhibitors is promising and warrant further development. Although several are under clinical trial, till date no repair inhibitor is approved for commercial use in cancer patients, with the exception of PARP inhibitors targeting single-strand break repair. Based on molecular profiling of repair proteins, better prognostic and therapeutic output can be achieved in patients. In the present review, we highlight the different mechanisms of DSB repair, chromatin dynamics to provide repair accessibility and modulation of inhibitors in association with molecular profiling and current gold standard treatment modalities for cancer.
Collapse
Affiliation(s)
- Ujjayinee Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
10
|
Singh J, Arora M, Kumari S, Verma D, Palanichamy JK, Qamar I, Chauhan SS, Chopra A. Molecular associations and clinical significance of core NHEJ pathway genes in renal clear cell carcinoma. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|