1
|
Sorroche BP, Miranda KC, Beltrami CM, Arantes LMRB, Kowalski LP, Marchi FA, Rogatto SR, Almeida JD. HOXA1 3'UTR Methylation Is a Potential Prognostic Biomarker in Oral Squamous cell Carcinoma. Cancers (Basel) 2024; 16:874. [PMID: 38473236 DOI: 10.3390/cancers16050874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND HOXA1 is a prognostic marker and a potential predictive biomarker for radioresistance in head and neck tumors. Its overexpression has been associated with promoter methylation and a worse prognosis in oral squamous cell carcinoma (OSCC) patients. However, opposite outcomes are also described. The effect of the methylation of this gene on different gene regions, other than the promoter, remains uncertain. We investigated the methylation profile at different genomic regions of HOXA1 in OSCC and correlated differentially methylated CpG sites with clinicopathological data. METHODS The HOXA1 DNA methylation status was evaluated by analyzing data from The Cancer Genome Atlas and three Gene Expression Omnibus datasets. Significant differentially methylated CpG sites were considered with a |∆β| ≥ 0.10 and a Bonferroni-corrected p-value < 0.01. Differentially methylated CpGs were validated by pyrosequencing using two independent cohorts of 15 and 47 OSCC patients, respectively. RESULTS Compared to normal tissues, we found significantly higher DNA methylation levels in the 3'UTR region of HOXA1 in OSCC. Higher methylation levels in tumor samples were positively correlated with smoking habits and patients' overall survival. CONCLUSIONS Our findings suggest that HOXA1 gene body methylation is a promising prognostic biomarker for OSCC with potential clinical applications in patient monitoring.
Collapse
Affiliation(s)
- Bruna Pereira Sorroche
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil
| | - Keila Cristina Miranda
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12224-300, Brazil
| | | | | | - Luiz Paulo Kowalski
- Head and Neck Surgery and Otorhinolaryngology Department, AC Camargo Cancer Center, Latin American Cooperative Oncology Group, São Paulo 01509-010, Brazil
- Head and Neck Surgery Department and LIM 28, University of São Paulo Medical School, São Paulo 01246-903, Brazil
| | - Fabio Albuquerque Marchi
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), São Paulo 01246-000, Brazil
- Clinical Hospital of the University of Sao Paulo Medical School (HCFMUSP), São Paulo 05403-010, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Janete Dias Almeida
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12224-300, Brazil
| |
Collapse
|
2
|
Wang L, Sun H, Cao L, Wang J. Role of HOXA1-4 in the development of genetic and malignant diseases. Biomark Res 2024; 12:18. [PMID: 38311789 PMCID: PMC10840290 DOI: 10.1186/s40364-024-00569-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024] Open
Abstract
The HOXA genes, belonging to the HOX family, encompass 11 members (HOXA1-11) and exert critical functions in early embryonic development, as well as various adult processes. Furthermore, dysregulation of HOXA genes is implicated in genetic diseases, heart disease, and various cancers. In this comprehensive overview, we primarily focused on the HOXA1-4 genes and their associated functions and diseases. Emphasis was placed on elucidating the impact of abnormal expression of these genes and highlighting their significance in maintaining optimal health and their involvement in the development of genetic and malignant diseases. Furthermore, we delved into their regulatory mechanisms, functional roles, and underlying biology and explored the therapeutic potential of targeting HOXA1-4 genes for the treatment of malignancies. Additionally, we explored the utility of HOXA1-4 genes as biomarkers for monitoring cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Lumin Wang
- Gastroenterology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Haifeng Sun
- The Third Department of Medical Oncology, Shaanxi Provincial Cancer Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Li Cao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Jinhai Wang
- Gastroenterology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
3
|
Yang J, Hu W, Zhao J. Overexpression of Homeobox A1 Relieves Ovalbumin-Induced Asthma in Mice and Is Associated with Blocking of the NF-κB Signaling Pathway. Crit Rev Immunol 2024; 44:25-35. [PMID: 38421703 DOI: 10.1615/critrevimmunol.2023050473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Homeobox A1 (HOXA1) is a protein coding gene involved in regulating immunity signaling. This study aims to explore the function and mechanism of HOXA1 in asthma. An asthma mouse model was established via ovalbumin (OVA) induction. Airway hyperresponsiveness was evaluated by the value of pause enhancement (Penh). Inflammatory cells in bronchoalveolar lavage fluid (BALF) were detected by Trypan blue and Wright staining. The pathological morphology of lung tissues was assessed by H&E staining. The IgE and inflammatory biomarkers (IL-1β, IL-6, IL-17, and TNF-α) in BALF and lung tissues were measured by ELISA. Western blot was performed to detect the expression of NF-κB pathway-related proteins. HOXA1 was down-regulated in OVA-induced asthmatic mice. Overexpression of HOXA1 decreased Penh and relieved pathological injury of lung tissues in OVA-induced mice. Overexpression of HOXA1 also reduced the numbers of total cells, leukocytes, eosinophils, neutrophils, macrophages, and lymphocytes, as well as the levels of IgE, IL-1β, IL-6, IL-17, and TNF-α in BALF of OVA-induced mice. The inflammatory biomarkers were also decreased in lung tissues by HOXA1 overexpression. In addition, HOXA1 overexpression blocked the NF-κB signaling pathway in OVA-induced mice. Overexpression of HOXA1 relieved OVA-induced asthma in female mice, which is associated with the blocking of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jianye Yang
- Affiliated Hospital of Shaoxing University (The Shaoxing Municipal Hospital)
| | - Wenbin Hu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Shaoxing University (The Shaoxing Municipal Hospital), Shaoxing 312000, China
| | - Jiaming Zhao
- Department of Cardiothoracic Surgery, Affiliated Hospital of Shaoxing University (The Shaoxing Municipal Hospital), Shaoxing 312000, China
| |
Collapse
|
4
|
Sweef O, Yang C, Wang Z. The Oncogenic and Tumor Suppressive Long Non-Coding RNA-microRNA-Messenger RNA Regulatory Axes Identified by Analyzing Multiple Platform Omics Data from Cr(VI)-Transformed Cells and Their Implications in Lung Cancer. Biomedicines 2022; 10:2334. [PMID: 36289596 PMCID: PMC9598927 DOI: 10.3390/biomedicines10102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic exposure to hexavalent chromium (Cr(VI)) causes lung cancer in humans, however, the underlying mechanism has not been well understood. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are commonly studied non-coding RNAs. miRNAs function mainly through interaction with the 3'-untranslated regions of messenger RNAs (mRNAs) to down-regulate gene expression. LncRNAs have been shown to function as competing endogenous RNAs (ceRNAs) to sponge miRNAs and regulate gene expression. It is now well accepted that lncRNAs and miRNAs could function as oncogenes or tumor suppressors. Dysregulations of lncRNAs and miRNAs have been shown to play important roles in cancer initiation, progression, and prognosis. To explore the mechanism of Cr(VI) lung carcinogenesis, we performed lncRNA, mRNA, and miRNA microarray analysis using total RNAs from our previously established chronic Cr(VI) exposure malignantly transformed and passage-matched control human bronchial epithelial BEAS-2B cells. Based on the differentially expressed lncRNAs, miRNAs, and mRNAs between the control (BEAS-2B-Control) and Cr(VI)-transformed (BEAS-Cr(VI)) cells and by using the lncRNA-miRNA interaction and miRNA target prediction algorithms, we identified three oncogenic (HOTAIRM1/miR-182-5p/ERO1A, GOLGA8B/miR-30d-5p/RUNX2, and PDCD6IPP2/miR-23a-3p/HOXA1) and three tumor suppressive (ANXA2P1/miR-20b-5p/FAM241A (C4orf32), MIR99AHG/miR-218-5p/GPM6A, and SH3RF3-AS1/miR-34a-5p/HECW2) lncRNA-miRNA-mRNA regulatory axes. Moreover, the relevance of these three oncogenic and three tumor suppressive lncRNA-miRNA-mRNA regulatory axes in lung cancer was explored by analyzing publicly available human lung cancer omics datasets. It was found that the identified three oncogenic lncRNA-miRNA-mRNA regulatory axes (HOTAIRM1/miR-182-5p/ERO1A, GOLGA8B/miR-30d-5p/RUNX2, and PDCD6IPP2/miR-23a-3p/HOXA1) and the three tumor suppressive lncRNA-miRNA-mRNA regulatory axes (ANXA2P1/miR-20b-5p/FAM241A (C4orf32), MIR99AHG/miR-218-5p/GPM6A, and SH3RF3-AS1/miR-34a-5p/HECW2) have significant diagnostic and prognosis prediction values in human lung cancer. In addition, our recent studies showed that Cr(VI)-transformed cells display cancer stem cell (CSC)-like properties. Further bioinformatics analysis identified the oncogenic lncRNA-miRNA-mRNA regulatory axes as the potential regulators of cancer stemness. In summary, our comprehensive analysis of multiple platform omics datasets obtained from Cr(VI)-transformed human bronchial epithelial cells identified several oncogenic and tumor suppressive lncRNA-miRNA-mRNA regulatory axes, which may play important roles in Cr(VI) carcinogenesis and lung cancer in general.
Collapse
Affiliation(s)
| | | | - Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| |
Collapse
|
5
|
He L, Liang M, Guo W, Liu J, Yu Y. HOXA1 is a radioresistance marker in multiple cancer types. Front Oncol 2022; 12:965427. [PMID: 36119466 PMCID: PMC9478604 DOI: 10.3389/fonc.2022.965427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is an important therapeutic method for patients with cancer. However, radioresistance can cause treatment failure. Thus, there is an urgent need to investigate mechanisms of radioresistance and identity markers that could be used to predict radioresistance and prognosis of post-radiotherapy cancer patients. In the present study, we propose HOXA1 as a candidate biomarker of intrinsic radioresistance in multiple cancer types. By analyzing data from The Cancer Genome Atlas (TCGA), we found that HOXA1 was aberrantly upregulated in multiple cancers, and that elevated HOXA1 was significantly associated with poor prognosis of post-radiotherapy head and neck squamous cell carcinoma (HNSCC) and low-grade glioma (LGG) patients. Correlation analysis showed that HOXA1 expression was positively correlated with expression of EGFR, CDK6, and CAV1, which have been reported to enhance radioresistance. In addition, gene set enrichment analysis (GSEA) showed that the oxidative phosphorylation gene set was negatively enriched in HOXA1 high-expression samples in both HNSCC and LGG. Moreover, immunohistochemical assays indicated that high HOXA1 expression was significantly correlated with a high recurrence rate of nasopharyngeal carcinoma (NPC) after radiotherapy. Further in vitro experiments demonstrated that HOXA1 knockdown markedly attenuated the DNA repair capacity of NPC cells and sensibilized NPC cells to irradiation. Taken together, the results of this study demonstrate that HOXA1 has potential to be a predictive marker for radioresistance and post-radiotherapy prognosis that could help to guide individualized treatment in multiple cancer types.
Collapse
Affiliation(s)
- Lu He
- Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Min Liang
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weisheng Guo
- Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jinquan Liu
- Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yi Yu, ; Jinquan Liu,
| | - Yi Yu
- Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yi Yu, ; Jinquan Liu,
| |
Collapse
|
6
|
Zhao F, Tian H, Liu X, Guan Y, Zhu Y, Ren P, Zhang J, Dong Y, Fu L. Homeobox A1 Facilitates Immune Escape and Alleviates Oxidative Stress in Lung Adenocarcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4102666. [PMID: 35633885 PMCID: PMC9136634 DOI: 10.1155/2022/4102666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
Abstract
Objective Recent studies have demonstrated that homeobox A1 (HOXA1) is upregulated in lung cancer due to RNA modifications (N6-methyladenosine), but the specific function of HOXA1 in lung adenocarcinoma (LUAD) remains indistinct. Herein, we investigated the role of HOXA1 in LUAD biology. Methods This study presented pancancer analysis of associations of HOXA1 with prognosis, TMB, and immune checkpoints. The expression of HOXA1 was detected in LUAD and normal tissues with immunohistochemistry and western blot. Through least absolute shrinkage and selection operator (LASSO) analysis, HOXA1-derived gene model was conducted in LUAD. Correlations of HOXA1 with immune cell infiltrations, immune checkpoints, HLAs, and chemotherapeutic sensitivity were evaluated. Colony formation, proliferation, and migration of LUAD cells with si-HOXA1 transfection were investigated, and the effects of HOXA1 on T cell exhaustion were assessed in vitro. Results HOXA1 expression was a risk factor of overall survival, disease-specific survival, and progression-free interval of LUAD. HOXA1 exhibited prominent associations with immune cell infiltration, immune checkpoints, and HLAs. HOXA1-derived gene signature reliably and independently predicted LUAD outcomes. Also, high-risk cases presented increased sensitivity to cisplatin, paclitaxel, docetaxel, vinorelbine, and etoposide. HOXA1 knockdown exhibited an inhibitory effect on proliferation and migration abilities of LUAD cells. Silencing HOXA1 weakened the expression of antioxidative stress markers Nrf2/HO-1 and T cell exhaustion marker CD155 in LUAD cells. Moreover, LUAD cells with HOXA1 knockdown enhanced the CD8+ T cell response. Conclusion Our data support the oncogenic function and prognostic significance of HOXA1 that facilitates immune escape and alleviates oxidative stress of LUAD.
Collapse
Affiliation(s)
- Fen Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, 250117 Shandong, China
| | - Hui Tian
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Xinchao Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong, China
| | - Yuanxiazi Guan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, China
| | - Ying Zhu
- Affiliated Hospital of Heze Medical College, Heze, 274008 Shandong, China
| | - Peng Ren
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Jianbo Zhang
- Departments of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, China
| | - Yinjun Dong
- Department of Thoracic surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, China
| | - Lei Fu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, China
| |
Collapse
|
7
|
Integrated computational analysis reveals HOX genes cluster as oncogenic drivers in head and neck squamous cell carcinoma. Sci Rep 2022; 12:7952. [PMID: 35562533 PMCID: PMC9106698 DOI: 10.1038/s41598-022-11590-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Alterations in homeobox (HOX) gene expression are involved in the progression of several cancer types including head and neck squamous cell carcinoma (HNSCC). However, regulation of the entire HOX cluster in the pathophysiology of HNSCC is still elusive. By using different comprehensive databases, we have identified the significance of differentially expressed HOX genes (DEHGs) in stage stratification and HPV status in the cancer genome atlas (TCGA)-HNSCC datasets. The genetic and epigenetic alterations, druggable genes, their associated functional pathways and their possible association with cancer hallmarks were identified. We have performed extensive analysis to identify the target genes of DEHGs driving HNSCC. The differentially expressed HOX cluster-embedded microRNAs (DEHMs) in HNSCC and their association with HOX-target genes were evaluated to construct a regulatory network of the HOX cluster in HNSCC. Our analysis identified sixteen DEHGs in HNSCC and determined their importance in stage stratification and HPV infection. We found a total of 55 HNSCC driver genes that were identified as targets of DEHGs. The involvement of DEHGs and their targets in cancer-associated signaling mechanisms have confirmed their role in pathophysiology. Further, we found that their oncogenic nature could be targeted by using the novel and approved anti-neoplastic drugs in HNSCC. Construction of the regulatory network depicted the interaction between DEHGs, DEHMs and their targets genes in HNSCC. Hence, aberrantly expressed HOX cluster genes function in a coordinated manner to drive HNSCC. It could provide a broad perspective to carry out the experimental investigation, to understand the underlying oncogenic mechanism and allow the discovery of new clinical biomarkers for HNSCC.
Collapse
|
8
|
Hurník P, Chyra Z, Ševčíková T, Štembírek J, Trtková KS, Gaykalova DA, Buchtová M, Hrubá E. Epigenetic Regulations of Perineural Invasion in Head and Neck Squamous Cell Carcinoma. Front Genet 2022; 13:848557. [PMID: 35571032 PMCID: PMC9091179 DOI: 10.3389/fgene.2022.848557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Carcinomas of the oral cavity and oropharynx belong among the ten most common malignancies in the human population. The prognosis of head and neck squamous cell carcinoma (HNSCC) is determined by the degree of invasiveness of the primary tumor and by the extent of metastatic spread into regional and distant lymph nodes. Moreover, the level of the perineural invasion itself associates with tumor localization, invasion's extent, and the presence of nodal metastases. Here, we summarize the current knowledge about different aspects of epigenetic changes, which can be associated with HNSCC while focusing on perineural invasion (PNI). We review epigenetic modifications of the genes involved in the PNI process in HNSCC from the omics perspective and specific epigenetic modifications in OSCC or other neurotropic cancers associated with perineural invasion. Moreover, we summarize DNA methylation status of tumor-suppressor genes, methylation and demethylation enzymes and histone post-translational modifications associated with PNI. The influence of other epigenetic factors on the HNSCC incidence and perineural invasion such as tobacco, alcohol and oral microbiome is overviewed and HPV infection is discussed as an epigenetic factor associated with OSCC and related perineural invasion. Understanding epigenetic regulations of axon growth that lead to tumorous spread or uncovering the molecular control of axon interaction with cancer tissue can help to discover new therapeutic targets for these tumors.
Collapse
Affiliation(s)
- Pavel Hurník
- Department of Clinical and Molecular Pathology and Medical Genetics, Faculty of Medicine and University Hospital Ostrava, Ostrava, Czechia
- Department of Histology and Embryology, Medical Faculty, Masaryk University, Brno, Czechia
| | - Zuzana Chyra
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czechia
| | - Tereza Ševčíková
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Department of Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Kateřina Smešný Trtková
- Department of Clinical and Molecular Pathology and Medical Genetics, Faculty of Medicine and University Hospital Ostrava, Ostrava, Czechia
- Department of Clinical and Molecular Pathology, Faculty of Medicine and University Hospital Olomouc, Olomouc, Czechia
| | - Daria A. Gaykalova
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland Medical Center, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, United States
- Institute for Genome Sciences, University of Maryland Medical Center, Baltimore, MD, United States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Eva Hrubá
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
9
|
Wang B, Liu L, Wu J, Mao X, Fang Z, Chen Y, Li W. Construction and Verification of a Combined Hypoxia and Immune Index for Clear Cell Renal Cell Carcinoma. Front Genet 2022; 13:711142. [PMID: 35222525 PMCID: PMC8863964 DOI: 10.3389/fgene.2022.711142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most aggressive malignancies in humans. Hypoxia-related genes are now recognized as a reflection of poor prognosis in cancer patients with cancer. Meanwhile, immune-related genes play an important role in the occurrence and progression of ccRCC. Nevertheless, reliable prognostic indicators based on hypoxia and immune status have not been well established in ccRCC. The aims of this study were to develop a new gene signature model using bioinformatics and open databases and to validate its prognostic value in ccRCC. The data used for the model structure can be accessed from The Cancer Genome Atlas database. Univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses were used to identify the hypoxia- and immune-related genes associated with prognostic risk, which were used to develop a characteristic model of prognostic risk. Kaplan-Meier and receiver-operating characteristic curve analyses were performed as well as independent prognostic factor analyses and correlation analyses of clinical characteristics in both the training and validation cohorts. In addition, differences in tumor immune cell infiltrates were compared between the high and low risk groups. Overall, 30 hypoxia- and immune-related genes were identified, and five hypoxia- and immune-related genes (EPO, PLAUR, TEK, TGFA, TGFB1) were ultimately selected. Survival analysis showed that the high-risk score on the hypoxia- and immune-related gene signature was significantly associated with adverse survival outcomes. Furthermore, clinical ccRCC samples from our medical center were used to validate the differential expression of the five genes in tumor tissue compared to normal tissue through quantitative real-time polymerase chain reaction (qRT-PCR). However, more clinical trials are needed to confirm these results, and future experimental studies must verify the potential mechanism behind the predictive value of the hypoxia- and immune-related gene signature.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lixiao Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinting Wu
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolu Mao
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhen Fang
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingyu Chen
- Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenfeng Li
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wenfeng Li,
| |
Collapse
|