1
|
Barba-Rosado LV, Carrascal-Hernández DC, Insuasty D, Grande-Tovar CD. Graphene Oxide (GO) for the Treatment of Bone Cancer: A Systematic Review and Bibliometric Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:186. [PMID: 38251150 PMCID: PMC10820493 DOI: 10.3390/nano14020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Cancer is a severe disease that, in 2022, caused more than 9.89 million deaths worldwide. One worrisome type of cancer is bone cancer, such as osteosarcoma and Ewing tumors, which occur more frequently in infants. This study shows an active interest in the use of graphene oxide and its derivatives in therapy against bone cancer. We present a systematic review analyzing the current state of the art related to the use of GO in treating osteosarcoma, through evaluating the existing literature. In this sense, studies focused on GO-based nanomaterials for potential applications against osteosarcoma were reviewed, which has revealed that there is an excellent trend toward the use of GO-based nanomaterials, based on their thermal and anti-cancer activities, for the treatment of osteosarcoma through various therapeutic approaches. However, more research is needed to develop highly efficient localized therapies. It is suggested, therefore, that photodynamic therapy, photothermal therapy, and the use of nanocarriers should be considered as non-invasive, more specific, and efficient alternatives in the treatment of osteosarcoma. These options present promising approaches to enhance the effectiveness of therapy while also seeking to reduce side effects and minimize the damage to surrounding healthy tissues. The bibliometric analysis of photothermal and photochemical treatments of graphene oxide and reduced graphene oxide from January 2004 to December 2022 extracted 948 documents with its search strategy, mainly related to research papers, review papers, and conference papers, demonstrating a high-impact field supported by the need for more selective and efficient bone cancer therapies. The central countries leading the research are the United States, Iran, Italy, Germany, China, South Korea, and Australia, with strong collaborations worldwide. At the same time, the most-cited papers were published in journals with impact factors of more than 6.0 (2021), with more than 290 citations. Additionally, the journals that published the most on the topic are high impact factor journals, according to the analysis performed, demonstrating the high impact of the research field.
Collapse
Affiliation(s)
- Lemy Vanessa Barba-Rosado
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
| | - Domingo César Carrascal-Hernández
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Carlos David Grande-Tovar
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
| |
Collapse
|
2
|
Fan L, Jiang Z, Xiong Y, Xu Z, Yang X, Gu D, Ainiwaer M, Li L, Liu J, Chen F. Recent Advances in the HPPH-Based Third-Generation Photodynamic Agents in Biomedical Applications. Int J Mol Sci 2023; 24:17404. [PMID: 38139233 PMCID: PMC10743769 DOI: 10.3390/ijms242417404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Photodynamic therapy has emerged as a recognized anti-tumor treatment involving three fundamental elements: photosensitizers, light, and reactive oxygen species. Enhancing the effectiveness of photosensitizers remains the primary avenue for improving the biological therapeutic outcomes of PDT. Through three generations of development, HPPH is a 2-(1-hexyloxyethyl)-2-devinyl derivative of pyropheophorbide-α, representing a second-generation photosensitizer already undergoing clinical trials for various tumors. The evolution toward third-generation photosensitizers based on HPPH involves structural modifications for multimodal applications and the combination of multifunctional compounds, leading to improved imaging localization and superior anti-tumor effects. While research into third-generation HPPH is beneficial for advancing PDT treatment, equal attention should also be directed toward the other two essential elements and personalized diagnosis and treatment methodologies.
Collapse
Affiliation(s)
- Lixiao Fan
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Zheng Jiang
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yu Xiong
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Zepeng Xu
- West China Clinical Medical College, Sichuan University, Chengdu 610064, China;
| | - Xin Yang
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Deying Gu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Mailudan Ainiwaer
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Leyu Li
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Jun Liu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Fei Chen
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Mohan H, Fagan A, Giordani S. Carbon Nanomaterials (CNMs) in Cancer Therapy: A Database of CNM-Based Nanocarrier Systems. Pharmaceutics 2023; 15:pharmaceutics15051545. [PMID: 37242787 DOI: 10.3390/pharmaceutics15051545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Carbon nanomaterials (CNMs) are an incredibly versatile class of materials that can be used as scaffolds to construct anticancer nanocarrier systems. The ease of chemical functionalisation, biocompatibility, and intrinsic therapeutic capabilities of many of these nanoparticles can be leveraged to design effective anticancer systems. This article is the first comprehensive review of CNM-based nanocarrier systems that incorporate approved chemotherapy drugs, and many different types of CNMs and chemotherapy agents are discussed. Almost 200 examples of these nanocarrier systems have been analysed and compiled into a database. The entries are organised by anticancer drug type, and the composition, drug loading/release metrics, and experimental results from these systems have been compiled. Our analysis reveals graphene, and particularly graphene oxide (GO), as the most frequently employed CNM, with carbon nanotubes and carbon dots following in popularity. Moreover, the database encompasses various chemotherapeutic agents, with antimicrotubule agents being the most common payload due to their compatibility with CNM surfaces. The benefits of the identified systems are discussed, and the factors affecting their efficacy are detailed.
Collapse
Affiliation(s)
- Hugh Mohan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| | - Andrew Fagan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| |
Collapse
|
4
|
Zhang X, Lei T, Du H. Prospect of cell penetrating peptides in stem cell tracking. Stem Cell Res Ther 2021; 12:457. [PMID: 34391472 PMCID: PMC8364034 DOI: 10.1186/s13287-021-02522-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/12/2021] [Indexed: 01/19/2023] Open
Abstract
Stem cell therapy has shown great efficacy in many diseases. However, the treatment mechanism is still unclear, which is a big obstacle for promoting clinical research. Therefore, it is particularly important to track transplanted stem cells in vivo, find out the distribution and condition of the stem cells, and furthermore reveal the treatment mechanism. Many tracking methods have been developed, including magnetic resonance imaging (MRI), fluorescence imaging, and ultrasound imaging (UI). Among them, MRI and UI techniques have been used in clinical. In stem cell tracking, a major drawback of these technologies is that the imaging signal is not strong enough, mainly due to the low cell penetration efficiency of imaging particles. Cell penetrating peptides (CPPs) have been widely used for cargo delivery due to its high efficacy, good safety properties, and wide delivery of various cargoes. However, there are few reports on the application of CPPs in current stem cell tracking methods. In this review, we systematically introduced the mechanism of CPPs into cell membranes and their advantages in stem cell tracking, discussed the clinical applications and limitations of CPPs, and finally we summarized several commonly used CPPs and their specific applications in stem cell tracking. Although it is not an innovation of tracer materials, CPPs as a powerful tool have broad prospects in stem cell tracking. ![]()
Collapse
Affiliation(s)
- Xiaoshuang Zhang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tong Lei
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China. .,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|