Hidema R, Fujito KY, Suzuki H. Drag force of polyethyleneglycol in flows of polymer solutions measured using a scanning probe microscope.
SOFT MATTER 2022;
18:455-464. [PMID:
34918726 DOI:
10.1039/d1sm01305j]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The drag force of polyethyleneglycol thiol (mPEG-SH) attached to a cantilever probe in the flows of glycerol and polyethyleneglycol (PEG) solutions was measured. The effects of the molecular weights of mPEG-SH, solute, and molecular weights of PEGs in the flows on the drag force were investigated. The drag force of mPEG-SH with any molecular weight in the flows of glycerol solutions was described well by the stem and ellipsoidal-flower model proposed in a previous study. However, the drag force further increased in the flow of the PEG solutions. To describe the increment, an assumption of polymer entanglement with mPEG-SH attached to the probe in the flow was employed. The modified stem and ellipsoidal-flower model that employed polymer entanglements fit well to the drag force of mPEG-SH with any molecular weight in the flow of the polymer solution.
Collapse