1
|
Chen K, Zhu L, Li J, Zhang Y, Yu Y, Wang X, Wei W, Huang K, Xu W. High-content tailoring strategy to improve the multifunctionality of functional nucleic acids. Biosens Bioelectron 2024; 261:116494. [PMID: 38901394 DOI: 10.1016/j.bios.2024.116494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Functional nucleic acids (FNAs) have attracted increasing attention in recent years due to their diverse physiological functions. The understanding of their conformational recognition mechanisms has advanced through nucleic acid tailoring strategies and sequence optimization. With the development of the FNA tailoring techniques, they have become a methodological guide for nucleic acid repurposing. Therefore, it is necessary to systematize the relationship between FNA tailoring strategies and the development of nucleic acid multifunctionality. This review systematically categorizes eight types of FNA multifunctionality, and introduces the traditional FNA tailoring strategy from five aspects, including deletion, substitution, splitting, fusion and elongation. Based on the current state of FNA modification, a new generation of FNA tailoring strategy, called the high-content tailoring strategy, was unprecedentedly proposed to improve FNA multifunctionality. In addition, the multiple applications of rational tailoring-driven FNA performance enhancement in various fields were comprehensively summarized. The limitations and potential of FNA tailoring and repurposing in the future are also explored in this review. In summary, this review introduces a novel tailoring theory, systematically summarizes eight FNA performance enhancements, and provides a systematic overview of tailoring applications across all categories of FNAs. The high-content tailoring strategy is expected to expand the application scenarios of FNAs in biosensing, biomedicine and materials science, thus promoting the synergistic development of various fields.
Collapse
Affiliation(s)
- Keren Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jie Li
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yongxia Yu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaofu Wang
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Wei
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
2
|
Chyży P, Kulik M, Shinobu A, Re S, Sugita Y, Trylska J. Molecular dynamics in multidimensional space explains how mutations affect the association path of neomycin to a riboswitch. Proc Natl Acad Sci U S A 2024; 121:e2317197121. [PMID: 38579011 PMCID: PMC11009640 DOI: 10.1073/pnas.2317197121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/15/2024] [Indexed: 04/07/2024] Open
Abstract
Riboswitches are messenger RNA (mRNA) fragments binding specific small molecules to regulate gene expression. A synthetic N1 riboswitch, inserted into yeast mRNA controls the translation of a reporter gene in response to neomycin. However, its regulatory activity is sensitive to single-point RNA mutations, even those distant from the neomycin binding site. While the association paths of neomycin to N1 and its variants remain unknown, recent fluorescence kinetic experiments indicate a two-step process driven by conformational selection. This raises the question of which step is affected by mutations. To address this, we performed all-atom two-dimensional replica-exchange molecular dynamics simulations for N1 and U14C, U14C[Formula: see text], U15A, and A17G mutants, ensuring extensive conformational sampling of both RNA and neomycin. The obtained neomycin association and binding paths, along with multidimensional free-energy profiles, revealed a two-step binding mechanism, consisting of conformational selection and induced fit. Neomycin binds to a preformed N1 conformation upon identifying a stable upper stem and U-turn motif in the riboswitch hairpin. However, the positioning of neomycin in the binding site occurs at different RNA-neomycin distances for each mutant, which may explain their different regulatory activities. The subsequent induced fit arises from the interactions of the neomycin's N3 amino group with RNA, causing the G9 backbone to rearrange. In the A17G mutant, the critical C6-A17/G17 stacking forms at a closer RNA-neomycin distance compared to N1. These findings together with estimated binding free energies coincide with experiments and elucidate why the A17G mutation decreases and U15A enhances N1 activity in response to neomycin.
Collapse
Affiliation(s)
- Piotr Chyży
- Centre of New Technologies, University of Warsaw, 02-097Warsaw, Poland
| | - Marta Kulik
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093Warsaw, Poland
| | - Ai Shinobu
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 650-0047Kobe, Japan
| | - Suyong Re
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 650-0047Kobe, Japan
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health, and Nutrition, 567-0085Ibaraki, Japan
| | - Yuji Sugita
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 650-0047Kobe, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 351-0198Wako, Japan
- RIKEN Center for Computational Science, 650-0047Kobe, Japan
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, 02-097Warsaw, Poland
| |
Collapse
|
3
|
Barth KM, Hiller DA, Strobel SA. The Impact of Second-Shell Nucleotides on Ligand Specificity in Cyclic Dinucleotide Riboswitches. Biochemistry 2024:10.1021/acs.biochem.3c00586. [PMID: 38329042 PMCID: PMC11306416 DOI: 10.1021/acs.biochem.3c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Ligand specificity is an essential requirement for all riboswitches. Some variant riboswitches utilize a common structural motif, yet through subtle sequence differences, they are able to selectively respond to different small molecule ligands and regulate downstream gene expression. These variants discriminate between structurally and chemically similar ligands. Crystal structures provide insight into how specificity is achieved. However, ligand specificity cannot always be explained solely by nucleotides in direct contact with the ligand. The cyclic dinucleotide variant family contains two classes, cyclic-di-GMP and cyclic-AMP-GMP riboswitches, that were distinguished based on the identity of a single nucleotide in contact with the ligand. Here we report a variant riboswitch with a mutation at a second ligand-contacting position that is promiscuous for both cyclic-di-GMP and cyclic-AMP-GMP despite a predicted preference for cyclic-AMP-GMP. A high-throughput mutational analysis, SMARTT, was used to quantitatively assess thousands of sites in the first- and second-shells of ligand contact for impacts on ligand specificity and promiscuity. In addition to nucleotides in direct ligand contact, nucleotides more distal from the binding site, within the J1/2 linker and the terminator helix, were identified that impact ligand specificity. These findings provide an example of how nucleotides outside the ligand binding pocket influence the riboswitch specificity. Moreover, these distal nucleotides could be used to predict promiscuous sequences.
Collapse
Affiliation(s)
- Kathryn M. Barth
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - David A. Hiller
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Scott A. Strobel
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
4
|
Wu Y, Zhu L, Zhang Y, Xu W. Multidimensional Applications and Challenges of Riboswitches in Biosensing and Biotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304852. [PMID: 37658499 DOI: 10.1002/smll.202304852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Riboswitches have received significant attention over the last two decades for their multiple functionalities and great potential for applications in various fields. This article highlights and reviews the recent advances in biosensing and biotherapy. These fields involve a wide range of applications, such as food safety detection, environmental monitoring, metabolic engineering, live cell imaging, wearable biosensors, antibacterial drug targets, and gene therapy. The discovery, origin, and optimization of riboswitches are summarized to help readers better understand their multidimensional applications. Finally, this review discusses the multidimensional challenges and development of riboswitches in order to further expand their potential for novel applications.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
5
|
Overbeck JH, Vögele J, Nussbaumer F, Duchardt‐Ferner E, Kreutz C, Wöhnert J, Sprangers R. 19F NMR Untersuchung des Konformationsaustauschs mehrerer Zustände im synthetischen Neomycin-bindenden Riboschalter. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202218064. [PMID: 38516132 PMCID: PMC10953372 DOI: 10.1002/ange.202218064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Indexed: 03/29/2023]
Abstract
AbstractDer synthetische Neomycin‐bindende Riboschalter interagiert mit seinem Liganden Neomycin sowie mit den verwandten Antibiotika Ribostamycin und Paromomycin. Die Bindung dieser Aminoglykoside induziert sehr ähnliche Grundzustandsstrukturen in der RNA, allerdings kann nur Neomycin die Initiierung der Translation effizient unterdrücken. Der molekulare Ursprung dieser Unterschiede wurde auf Unterschiede in der Dynamik der Ligand‐Riboschalter‐Komplexe zurückgeführt. In diesem Artikel kombinieren wir fünf komplementäre fluorbasierte NMR‐Methoden, um die Dynamik der drei Riboschalter‐Komplexe im Sekunden‐ bis Mikrosekundenbereich genau zu quantifizieren. Unsere Daten offenbaren komplexe Austauschprozesse mit bis zu vier strukturell unterschiedlichen Zuständen. Wir interpretieren unsere Ergebnisse in einem Modell, das ein Zusammenspiel zwischen verschiedenen chemischen Gruppen in den Antibiotika und spezifischen Basen im Riboschalter zeigt. Allgemeiner unterstreichen unsere Daten das Potenzial von 19F NMR‐Methoden, komplexe Austauschprozesse mit mehreren angeregten Zuständen zu charakterisieren.
Collapse
Affiliation(s)
- Jan H. Overbeck
- Department of Biophysics IRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193051RegensburgDeutschland
| | - Jennifer Vögele
- Institute for Molecular BiosciencesGoethe-University FrankfurtMax-von-Laue-Str. 960438Frankfurt/M.Deutschland
| | - Felix Nussbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckÖsterreich
| | - Elke Duchardt‐Ferner
- Institute for Molecular BiosciencesGoethe-University FrankfurtMax-von-Laue-Str. 960438Frankfurt/M.Deutschland
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckÖsterreich
| | - Jens Wöhnert
- Institute for Molecular BiosciencesGoethe-University FrankfurtMax-von-Laue-Str. 960438Frankfurt/M.Deutschland
| | - Remco Sprangers
- Department of Biophysics IRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193051RegensburgDeutschland
| |
Collapse
|
6
|
Overbeck JH, Vögele J, Nussbaumer F, Duchardt‐Ferner E, Kreutz C, Wöhnert J, Sprangers R. Multi-Site Conformational Exchange in the Synthetic Neomycin-Sensing Riboswitch Studied by 19 F NMR. Angew Chem Int Ed Engl 2023; 62:e202218064. [PMID: 36970768 PMCID: PMC10952710 DOI: 10.1002/anie.202218064] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/24/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
The synthetic neomycin-sensing riboswitch interacts with its cognate ligand neomycin as well as with the related antibiotics ribostamycin and paromomycin. Binding of these aminoglycosides induces a very similar ground state structure in the RNA, however, only neomycin can efficiently repress translation initiation. The molecular origin of these differences has been traced back to differences in the dynamics of the ligand:riboswitch complexes. Here, we combine five complementary fluorine based NMR methods to accurately quantify seconds to microseconds dynamics in the three riboswitch complexes. Our data reveal complex exchange processes with up to four structurally different states. We interpret our findings in a model that shows an interplay between different chemical groups in the antibiotics and specific bases in the riboswitch. More generally, our data underscore the potential of 19 F NMR methods to characterize complex exchange processes with multiple excited states.
Collapse
Affiliation(s)
- Jan H. Overbeck
- Department of Biophysics IRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193051RegensburgGermany
| | - Jennifer Vögele
- Institute for Molecular BiosciencesGoethe-University FrankfurtMax-von-Laue-Str. 960438Frankfurt/M.Germany
| | - Felix Nussbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Elke Duchardt‐Ferner
- Institute for Molecular BiosciencesGoethe-University FrankfurtMax-von-Laue-Str. 960438Frankfurt/M.Germany
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Jens Wöhnert
- Institute for Molecular BiosciencesGoethe-University FrankfurtMax-von-Laue-Str. 960438Frankfurt/M.Germany
| | - Remco Sprangers
- Department of Biophysics IRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193051RegensburgGermany
| |
Collapse
|
7
|
Vögele J, Duchardt-Ferner E, Kruse H, Zhang Z, Sponer J, Krepl M, Wöhnert J. Structural and dynamic effects of pseudouridine modifications on noncanonical interactions in RNA. RNA (NEW YORK, N.Y.) 2023; 29:790-807. [PMID: 36868785 PMCID: PMC10187676 DOI: 10.1261/rna.079506.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/10/2023] [Indexed: 05/18/2023]
Abstract
Pseudouridine is the most frequently naturally occurring RNA modification, found in all classes of biologically functional RNAs. Compared to uridine, pseudouridine contains an additional hydrogen bond donor group and is therefore widely regarded as a structure stabilizing modification. However, the effects of pseudouridine modifications on the structure and dynamics of RNAs have so far only been investigated in a limited number of different structural contexts. Here, we introduced pseudouridine modifications into the U-turn motif and the adjacent U:U closing base pair of the neomycin-sensing riboswitch (NSR)-an extensively characterized model system for RNA structure, ligand binding, and dynamics. We show that the effects of replacing specific uridines with pseudouridines on RNA dynamics crucially depend on the exact location of the replacement site and can range from destabilizing to locally or even globally stabilizing. By using a combination of NMR spectroscopy, MD simulations and QM calculations, we rationalize the observed effects on a structural and dynamical level. Our results will help to better understand and predict the consequences of pseudouridine modifications on the structure and function of biologically important RNAs.
Collapse
Affiliation(s)
- Jennifer Vögele
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Zhengyue Zhang
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Jens Wöhnert
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
8
|
Dong X, Qi S, Khan IM, Sun Y, Zhang Y, Wang Z. Advances in riboswitch-based biosensor as food samples detection tool. Compr Rev Food Sci Food Saf 2023; 22:451-472. [PMID: 36511082 DOI: 10.1111/1541-4337.13077] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022]
Abstract
Food safety has always been a hot issue of social concern, and biosensing has been widely used in the field of food safety detection. Compared with traditional aptamer-based biosensors, aptamer-based riboswitch biosensing represents higher precision and programmability. A riboswitch is an elegant example of controlling gene expression, where the target is coupled to the aptamer domain, resulting in a conformational change in the downstream expression domain and determining the signal output. Riboswitch-based biosensing can be extensively applied to the portable real-time detection of food samples. The numerous key features of riboswitch-based biosensing emphasize their sustainability, renewable, and testing, which promises to transform engineering applications in the field of food safety. This review covers recent developments in riboswitch-based biosensors. The brief history, definition, and modular design (regulatory mode, reporter, and expression platform) of riboswitch-based biosensors are explained for better insight into the design and construction. We summarize recent advances in various riboswitch-based biosensors involving theophylline, malachite green, tetracycline, neomycin, fluoride, thrombin, naringenin, ciprofloxacin, and paromomycin, aiming to provide general guidance for the design of riboswitch-based biosensors. Finally, the challenges and prospects are also summarized as a way forward stratagem and signs of progress.
Collapse
Affiliation(s)
- Xiaoze Dong
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yuhan Sun
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Collaborative innovation center of food safety and quality control in Jiangsu Province, Food, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Wu Y, Zhu L, Li S, Chu H, Wang X, Xu W. High content design of riboswitch biosensors: All-around rational module-by-module design. Biosens Bioelectron 2022; 220:114887. [DOI: 10.1016/j.bios.2022.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
|
10
|
Bottaro S, Bussi G, Lindorff-Larsen K. Conformational Ensembles of Noncoding Elements in the SARS-CoV-2 Genome from Molecular Dynamics Simulations. J Am Chem Soc 2021; 143:8333-8343. [PMID: 34039006 PMCID: PMC8188756 DOI: 10.1021/jacs.1c01094] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/17/2022]
Abstract
The 5' untranslated region (UTR) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome is a conserved, functional and structured genomic region consisting of several RNA stem-loop elements. While the secondary structure of such elements has been determined experimentally, their three-dimensional structures are not known yet. Here, we predict structure and dynamics of five RNA stem loops in the 5'-UTR of SARS-CoV-2 by extensive atomistic molecular dynamics simulations, more than 0.5 ms of aggregate simulation time, in combination with enhanced sampling techniques. We compare simulations with available experimental data, describe the resulting conformational ensembles, and identify the presence of specific structural rearrangements in apical and internal loops that may be functionally relevant. Our atomic-detailed structural predictions reveal a rich dynamics in these RNA molecules, could help the experimental characterization of these systems, and provide putative three-dimensional models for structure-based drug design studies.
Collapse
Affiliation(s)
- Sandro Bottaro
- Structural
Biology and NMR Laboratory & Linderstrøm-Lang Centre for
Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Giovanni Bussi
- Scuola
Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Kresten Lindorff-Larsen
- Structural
Biology and NMR Laboratory & Linderstrøm-Lang Centre for
Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|