1
|
Fanlo-Ucar H, Picón-Pagès P, Herrera-Fernández V, ILL-Raga G, Muñoz FJ. The Dual Role of Amyloid Beta-Peptide in Oxidative Stress and Inflammation: Unveiling Their Connections in Alzheimer's Disease Etiopathology. Antioxidants (Basel) 2024; 13:1208. [PMID: 39456461 PMCID: PMC11505517 DOI: 10.3390/antiox13101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, and it is currently the seventh leading cause of death worldwide. It is characterized by the extracellular aggregation of the amyloid β-peptide (Aβ) into oligomers and fibrils that cause synaptotoxicity and neuronal death. Aβ exhibits a dual role in promoting oxidative stress and inflammation. This review aims to unravel the intricate connection between these processes and their contribution to AD progression. The review delves into oxidative stress in AD, focusing on the involvement of metals, mitochondrial dysfunction, and biomolecule oxidation. The distinct yet overlapping concept of nitro-oxidative stress is also discussed, detailing the roles of nitric oxide, mitochondrial perturbations, and their cumulative impact on Aβ production and neurotoxicity. Inflammation is examined through astroglia and microglia function, elucidating their response to Aβ and their contribution to oxidative stress within the AD brain. The blood-brain barrier and oligodendrocytes are also considered in the context of AD pathophysiology. We also review current diagnostic methodologies and emerging therapeutic strategies aimed at mitigating oxidative stress and inflammation, thereby offering potential treatments for halting or slowing AD progression. This comprehensive synthesis underscores the pivotal role of Aβ in bridging oxidative stress and inflammation, advancing our understanding of AD and informing future research and treatment paradigms.
Collapse
Affiliation(s)
- Hugo Fanlo-Ucar
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Pol Picón-Pagès
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
- Laboratory of Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08028 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Gerard ILL-Raga
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Francisco J. Muñoz
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| |
Collapse
|
2
|
Gonçalves M, Vale N, Silva P. Neuroprotective Effects of Olive Oil: A Comprehensive Review of Antioxidant Properties. Antioxidants (Basel) 2024; 13:762. [PMID: 39061831 PMCID: PMC11274152 DOI: 10.3390/antiox13070762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases are a significant challenge to global healthcare, and oxidative stress plays a crucial role in their development. This paper presents a comprehensive analysis of the neuroprotective potential of olive oil, with a primary focus on its antioxidant properties. The chemical composition of olive oil, including key antioxidants, such as oleuropein, hydroxytyrosol, and oleocanthal, is systematically examined. The mechanisms by which these compounds provide neuroprotection, including counteracting oxidative damage and modulating neuroprotective pathways, are explored. The neuroprotective efficacy of olive oil is evaluated by synthesizing findings from various sources, including in vitro studies, animal models, and clinical trials. The integration of olive oil into dietary patterns, particularly its role in the Mediterranean diet, and its broader implications in neurodegenerative disease prevention are also discussed. The challenges in translating preclinical findings to clinical applications are acknowledged and future research directions are proposed to better understand the potential of olive oil in mitigating the risk of neurodegenerative conditions. This review highlights olive oil not only as a dietary component, but also as a promising candidate in preventive neurology, advocating for further investigation in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Marta Gonçalves
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| |
Collapse
|
3
|
Kountouras J, Boziki M, Kazakos E, Theotokis P, Kesidou E, Nella M, Bakirtzis C, Karafoulidou E, Vardaka E, Mouratidou MC, Kyrailidi F, Tzitiridou-Chatzopoulou M, Orovou E, Giartza-Taxidou E, Deretzi G, Grigoriadis N, Doulberis M. Impact of Helicobacter pylori and metabolic syndrome on mast cell activation-related pathophysiology and neurodegeneration. Neurochem Int 2024; 175:105724. [PMID: 38508416 DOI: 10.1016/j.neuint.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Both Helicobacter pylori (H. pylori) infection and metabolic syndrome (MetS) are highly prevalent worldwide. The emergence of relevant research suggesting a pathogenic linkage between H. pylori infection and MetS-related cardio-cerebrovascular diseases and neurodegenerative disorders, particularly through mechanisms involving brain pericyte deficiency, hyperhomocysteinemia, hyperfibrinogenemia, elevated lipoprotein-a, galectin-3 overexpression, atrial fibrillation, and gut dysbiosis, has raised stimulating questions regarding their pathophysiology and its translational implications for clinicians. An additional stimulating aspect refers to H. pylori and MetS-related activation of innate immune cells, mast cells (MC), which is an important, often early, event in systemic inflammatory pathologies and related brain disorders. Synoptically, MC degranulation may play a role in the pathogenesis of H. pylori and MetS-related obesity, adipokine effects, dyslipidemia, diabetes mellitus, insulin resistance, arterial hypertension, vascular dysfunction and arterial stiffness, an early indicator of atherosclerosis associated with cardio-cerebrovascular and neurodegenerative disorders. Meningeal MC can be activated by triggers including stress and toxins resulting in vascular changes and neurodegeneration. Likewise, H.pylori and MetS-related MC activation is linked with: (a) vasculitis and thromboembolic events that increase the risk of cardio-cerebrovascular and neurodegenerative disorders, and (b) gut dysbiosis-associated neurodegeneration, whereas modulation of gut microbiota and MC activation may promote neuroprotection. This narrative review investigates the intricate relationship between H. pylori infection, MetS, MC activation, and their collective impact on pathophysiological processes linked to neurodegeneration. Through a comprehensive search of current literature, we elucidate the mechanisms through which H. pylori and MetS contribute to MC activation, subsequently triggering cascades of inflammatory responses. This highlights the role of MC as key mediators in the pathogenesis of cardio-cerebrovascular and neurodegenerative disorders, emphasizing their involvement in neuroinflammation, vascular dysfunction and, ultimately, neuronal damage. Although further research is warranted, we provide a novel perspective on the pathophysiology and management of brain disorders by exploring potential therapeutic strategies targeting H. pylori eradication, MetS management, and modulation of MC to mitigate neurodegeneration risk while promoting neuroprotection.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece.
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelos Kazakos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Maria Nella
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Elisabeth Vardaka
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, 57400, Macedonia, Greece
| | - Maria C Mouratidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Foteini Kyrailidi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Eirini Orovou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Evaggelia Giartza-Taxidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Georgia Deretzi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Neurology, Papageorgiou General Hospital, Thessaloniki, Macedonia, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Gastroklinik, Private Gastroenterological Practice, 8810, Horgen, Switzerland; Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001, Aarau, Switzerland
| |
Collapse
|
4
|
Wu Y, Yu Z. Association between dietary selenium intake and the prevalence of hypertension: results from the National Health and Nutrition Examination Survey 2003-2018. Front Immunol 2024; 15:1338745. [PMID: 38292866 PMCID: PMC10824938 DOI: 10.3389/fimmu.2024.1338745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Aim The epidemiological evidence regarding the impact of dietary selenium intake on hypertension continues to be a subject of controversy. Our objective is to examine the correlation between dietary selenium intake and the prevalence of hypertension within a substantial and diverse population in the United States. Methods We carried out a cross-sectional study using data from the National Health and Nutrition Examination Survey (NHANES) to assess the association between dietary selenium intake and hypertension prevalence. Weight logistic regression analysis and smooth curve fitting were utilized to explore potential linear relationships. Subgroup analysis was further employed to investigate potential differences in this relationship across populations and assess potential synergies. Results The study included 32,928 individuals, and the average dietary selenium intake was 1.12 ± 0.53 μg. The prevalence rate of hypertension was 36.55% overall and decreased with the higher dietary selenium intake quartiles (quartiles 1, 40.25%; quartiles 2, 37.71%; quartiles 3, 36.04%, quartiles 4, 32.23%, p < 0.001). Each quartile increase in dietary selenium intake associated with 11% decreased the likelihood of prevalence of hypertension [OR = 0.89; 95% CI: 0.80-1.00; p = 0.0425]. Subgroup analyses revealed that there was no significant correlation between gender, age, body mass index, smoking status, alcohol consumption, and diabetes mellitus in relation to the association between dietary selenium intake and the prevalence of hypertension. Conclusion The prevalence of hypertension in adults was found to be linearly and negatively correlated with dietary selenium intake. In order to improve the prevention and treatment of hypertension, greater emphasis should be placed on selenium consumption.
Collapse
Affiliation(s)
| | - Zongliang Yu
- Department of Cardiology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| |
Collapse
|
5
|
Alonso Torrens A, Mitchell CA, Pourshahidi LK, Murphy BÓ, Allwood W, Rizzetto L, Scholz M, Tuohy K, Pereira-Caro G, Moreno-Rojas JM, McDougall G, Gill CIR. Long-term supplementation with anthocyanin-rich or -poor Rubus idaeus berries does not influence microvascular architecture nor cognitive outcome in the APP/PS-1 mouse model of Alzheimer's disease. Int J Food Sci Nutr 2023; 74:33-50. [PMID: 36450698 DOI: 10.1080/09637486.2022.2141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Disruption of microvascular architecture is a common pathogenic mechanism in the progression of Alzheimer's disease (AD). Given the anti-angiogenic activity of berry (poly)phenols, we investigated whether long-term feeding of Rubus idaeus (raspberries) could ameliorate cerebral microvascular pathology and improve cognition in the APP/PS-1 mouse model of AD. Male C57Bl/6J mice (50 wild type, 50 APP/PS-1) aged 4-months were fed for 24-weeks, with a normal diet enriched with either 100 mg/day glucose (control diet) or supplemented with glucose and freeze-dried anthocyanin-rich (red) or -poor (yellow) raspberries (100 mg/day) and assessed/sampled post intervention. Cerebral microvascular architecture of wild-type mice was characterised by regularly spaced capillaries with uniform diameters, unlike APP/PS-1 transgenic mice which showed dysregulated microvascular architecture. Long-term feeding of raspberries demonstrated limited modulation of microbiota and no substantive effect on microvascular architecture or cognition in either mice model although changes were evident in endogenous cerebral and plasmatic metabolites.
Collapse
Affiliation(s)
- Aaron Alonso Torrens
- Nutrition Innovation Centre for Food and Health (NICHE), Centre for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Christopher A Mitchell
- Nutrition Innovation Centre for Food and Health (NICHE), Centre for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - L Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), Centre for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Brian Óg Murphy
- Nutrition Innovation Centre for Food and Health (NICHE), Centre for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - William Allwood
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences, The James Hutton Institute, Invergowrie, Dundee, Scotland
| | - Lisa Rizzetto
- Nutrition and Nutrigenomics Unit, Research and Innovation Centre, San Michele all'Adige, Trentino, Italy
| | - Matthias Scholz
- Nutrition and Nutrigenomics Unit, Research and Innovation Centre, San Michele all'Adige, Trentino, Italy
| | - Kieran Tuohy
- Nutrition and Nutrigenomics Unit, Research and Innovation Centre, San Michele all'Adige, Trentino, Italy
| | - Gema Pereira-Caro
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Córdoba, Spain.,Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - José Manuel Moreno-Rojas
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Córdoba, Spain.,Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Gordon McDougall
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences, The James Hutton Institute, Invergowrie, Dundee, Scotland
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), Centre for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| |
Collapse
|
6
|
Zhou N, Xie ZP, Liu Q, Xu Y, Dai SC, Lu J, Weng JY, Wu LD. The dietary inflammatory index and its association with the prevalence of hypertension: A cross-sectional study. Front Immunol 2023; 13:1097228. [PMID: 36741368 PMCID: PMC9893776 DOI: 10.3389/fimmu.2022.1097228] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/20/2022] [Indexed: 01/21/2023] Open
Abstract
Aims We aim to investigate the association of the Dietary Inflammatory Index (DII) with the prevalence of hypertension in a large multiracial population in the United States. Methods Participants from the National Health and Nutrition Examination Survey (NHANES) (1999-2018) were included in this cross-sectional study. Dietary information was obtained and used to calculate DII. Blood pressures of participants were measured by experienced examiners. The NHANES used the method of "stratified multistage probability sampling," and this study is a weight analysis following the NHANES analytic guidance. Weight logistic regression analysis was adopted to investigate the association of hypertension with DII. Least Absolute Shrinkage and Selection Operator (LASSO) regression was carried out to screen the most important dietary factors associated with the risk of hypertension. Moreover, a nomogram model based on key dietary factors was established; the receiver operating characteristic (ROC) curve was used to evaluate the diagnostic power of the nomogram model for screening hypertension risk. Results A total of 45,023 participants were included in this study, representing 191 million residents in the United States. Participants with hypertension had an elevated DII compared with those without hypertension. Weight logistic regression showed that an increment of DII was strongly associated with hypertension after adjusting for confounding factors. The nomogram model, based on key dietary factors screened by LASSO regression, showed a favorable discriminatory power with an area under the curve (AUC) of 78.5% (95% CI: 78.5%-79.3%). Results of the sensitivity analysis excluding participants who received any drug treatment were consistent with those in the main analysis. Conclusion An increment of DII is associated with the risk of hypertension. For better prevention and treatment of hypertension, more attention should be paid to controlling dietary inflammation.
Collapse
Affiliation(s)
- Nan Zhou
- Health Examination Center, Huadong Sanatorium, Wuxi, China
| | - Zhi-Ping Xie
- Health Examination Center, Huadong Sanatorium, Wuxi, China
| | - Qing Liu
- Health Examination Center, Huadong Sanatorium, Wuxi, China
| | - Yun Xu
- Department of Anesthesiology, Huadong Sanatorium, Wuxi, China
| | - Si-Cheng Dai
- Health Examination Center, Huadong Sanatorium, Wuxi, China
| | - Juan Lu
- Department of Anesthesiology, Huadong Sanatorium, Wuxi, China,*Correspondence: Juan Lu, ; Li-Da Wu, ; Jia-Yi Weng,
| | - Jia-Yi Weng
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China,*Correspondence: Juan Lu, ; Li-Da Wu, ; Jia-Yi Weng,
| | - Li-Da Wu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Juan Lu, ; Li-Da Wu, ; Jia-Yi Weng,
| |
Collapse
|
7
|
Lu R, Zhang L, Yang X. Interaction between autophagy and the NLRP3 inflammasome in Alzheimer’s and Parkinson’s disease. Front Aging Neurosci 2022; 14:1018848. [PMID: 36262883 PMCID: PMC9574200 DOI: 10.3389/fnagi.2022.1018848] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Autophagy degrades phagocytosed damaged organelles, misfolded proteins, and various pathogens through lysosomes as an essential way to maintain cellular homeostasis. Autophagy is a tightly regulated cellular self-degradation process that plays a crucial role in maintaining normal cellular function and homeostasis in the body. The NLRP3 inflammasome in neuroinflammation is a vital recognition receptor in innate cellular immunity, sensing external invading pathogens and endogenous stimuli and further triggering inflammatory responses. The NLRP3 inflammasome forms an inflammatory complex by recognizing DAMPS or PAMPS, and its activation triggers caspase-1-mediated cleavage of pro-IL-1β and pro-IL-18 to promote the inflammatory response. In recent years, it has been reported that there is a complex interaction between autophagy and neuroinflammation. Strengthening autophagy can regulate the expression of NLRP3 inflammasome to reduce neuroinflammation in neurodegenerative disease and protect neurons. However, the related mechanism is not entirely clear. The formation of protein aggregates is one of the standard features of Neurodegenerative diseases. A large number of toxic protein aggregates can induce inflammation. In theory, activation of the autophagy pathway can remove the potential toxicity of protein aggregates and delay the progression of the disease. This article aims to review recent research on the interaction of autophagy, NLRP3 inflammasome, and protein aggregates in Alzheimer’s disease (AD) and Parkinson’s disease (PD), analyze the mechanism and provide theoretical references for further research in the future.
Collapse
Affiliation(s)
- Ranran Lu
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Neurological Disease Research, Ürümqi, China
| | - Lijie Zhang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Neurological Disease Research, Ürümqi, China
| | - Xinling Yang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Neurological Disease Research, Ürümqi, China
- *Correspondence: Xinling Yang,
| |
Collapse
|
8
|
Fisette A, Sergi D, Breton-Morin A, Descôteaux S, Martinoli MG. New Insights on the Role of Bioactive Food Derivatives in Neurodegeneration and Neuroprotection. Curr Pharm Des 2022; 28:3068-3081. [PMID: 36121075 DOI: 10.2174/1381612828666220919085742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/30/2022] [Indexed: 01/28/2023]
Abstract
Over the last three decades, neurodegenerative diseases have received increasing attention due to their frequency in the aging population and the social and economic burdens they are posing. In parallel, an era's worth of research in neuroscience has shaped our current appreciation of the complex relationship between nutrition and the central nervous system. Particular branches of nutrition continue to galvanize neuroscientists, in particular the diverse roles that bioactive food derivatives play on health and disease. Bioactive food derivatives are nowadays recognized to directly impact brain homeostasis, specifically with respect to their actions on cellular mechanisms of oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis and autophagy. However, ambiguities still exist regarding the significance of the influence of bioactive food derivatives on human health. In turn, gut microbiota dysbiosis is emerging as a novel player in the pathogenesis of neurodegenerative diseases. Currently, several routes of communication exist between the gut and the brain, where molecules are either released in the bloodstream or directly transported to the CNS. As such, bioactive food derivatives can modulate the complex ecosystem of the gut-brain axis, thus, targeting this communication network holds promises as a neuroprotective tool. This review aims at addressing one of the emerging aspects of neuroscience, particularly the interplay between food bioactive derivatives and neurodegeneration. We will specifically address the role that polyphenols and omega-3 fatty acids play in preventing neurodegenerative diseases and how dietary intervention complements available pharmacological approaches.
Collapse
Affiliation(s)
- Alexandre Fisette
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Domenico Sergi
- Department of Translational Medicine, University di Ferrara, Ferrara, Italy
| | - Alyssa Breton-Morin
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Savanah Descôteaux
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Maria-Grazia Martinoli
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada.,Department of Psychiatry and Neuroscience, U. Laval and CHU Research Center, Québec, Canada
| |
Collapse
|
9
|
Proteomic Assessment of C57BL/6 Hippocampi after Non-Selective Pharmacological Inhibition of Nitric Oxide Synthase Activity: Implications of Seizure-like Neuronal Hyperexcitability Followed by Tauopathy. Biomedicines 2022; 10:biomedicines10081772. [PMID: 35892672 PMCID: PMC9331517 DOI: 10.3390/biomedicines10081772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Nitric oxide (NO) is a small gaseous signaling molecule responsible for maintaining homeostasis in a myriad of tissues and molecular pathways in neurology and the cardiovasculature. In recent years, there has been increasing interest in the potential interaction between arterial stiffness (AS), an independent cardiovascular risk factor, and neurodegenerative syndromes given increasingly epidemiological study reports. For this reason, we previously investigated the mechanistic convergence between AS and neurodegeneration via the progressive non-selective inhibition of all nitric oxide synthase (NOS) isoforms with N(G)-nitro-L-arginine methyl ester (L-NAME) in C57BL/6 mice. Our previous results showed progressively increased AS in vivo and impaired visuospatial learning and memory in L-NAME-treated C57BL/6 mice. In the current study, we sought to further investigate the progressive molecular signatures in hippocampal tissue via LC–MS/MS proteomic analysis. Our data implicate mitochondrial dysfunction due to progressive L-NAME treatment. Two weeks of L-NAME treatment implicates altered G-protein-coupled-receptor signaling in the nerve synapse and associated presence of seizures and altered emotional behavior. Furthermore, molecular signatures implicate the cerebral presence of seizure-related hyperexcitability after short-term (8 weeks) treatment followed by ribosomal dysfunction and tauopathy after long-term (16 weeks) treatment.
Collapse
|
10
|
Hendrickx JO, Calus E, De Deyn PP, Van Dam D, De Meyer GRY. Short-Term Pharmacological Induction of Arterial Stiffness and Hypertension with Angiotensin II Does Not Affect Learning and Memory and Cerebral Amyloid Load in Two Murine Models of Alzheimer's Disease. Int J Mol Sci 2022; 23:2738. [PMID: 35269879 PMCID: PMC8910756 DOI: 10.3390/ijms23052738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
Given the unprecedented rise in the world's population, the prevalence of prominent age-related disorders, like cardiovascular disease and dementia, will further increase. Recent experimental and epidemiological evidence suggests a mechanistic overlap between cardiovascular disease and dementia with a specific focus on the linkage between arterial stiffness, a strong independent predictor of cardiovascular disease, and/or hypertension with Alzheimer's disease. In the present study, we investigated whether pharmacological induction of arterial stiffness and hypertension with angiotensin II (1 µg·kg-1·min-1 for 28 days via an osmotic minipump) impairs the progression of Alzheimer's disease in two mouse models (hAPP23+/- and hAPPswe/PSEN1dE9 mice). Our results show increased arterial stiffness in vivo and hypertension in addition to cardiac hypertrophy after angiotensin II treatment. However, visuospatial learning and memory and pathological cerebral amyloid load in both Alzheimer's disease mouse models were not further impaired. It is likely that the 28-day treatment period with angiotensin II was too short to observe additional effects on cognition and cerebral pathology.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Antwerp, Belgium;
| | - Elke Calus
- Laboratory of Neurochemistry and Behaviour, University of Antwerp, 2610 Antwerp, Belgium; (E.C.); (P.P.D.D.); (D.V.D.)
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behaviour, University of Antwerp, 2610 Antwerp, Belgium; (E.C.); (P.P.D.D.); (D.V.D.)
- Department of Neurology and Alzheimer Center, University of Groningen, 9713 GZ Groningen, The Netherlands
- University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, University of Antwerp, 2610 Antwerp, Belgium; (E.C.); (P.P.D.D.); (D.V.D.)
- Department of Neurology and Alzheimer Center, University of Groningen, 9713 GZ Groningen, The Netherlands
- University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | | |
Collapse
|
11
|
Rivera‐Rivera LA, Eisenmenger L, Cody KA, Reher T, Betthauser T, Cadman RV, Rowley HA, Carlsson CM, Chin NA, Johnson SC, Johnson KM. Cerebrovascular stiffness and flow dynamics in the presence of amyloid and tau biomarkers. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12253. [PMID: 35005194 PMCID: PMC8719432 DOI: 10.1002/dad2.12253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/30/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION This work investigated the relationship between cerebrovascular disease (CVD) markers and Alzheimer's disease (AD) biomarkers of amyloid beta deposition, and neurofibrillary tau tangles in subjects spanning the AD clinical spectrum. METHODS A total of 136 subjects participated in this study. Four groups were established based on AD biomarker positivity from positron emission tomography (amyloid [A] and tau [T]) and clinical diagnosis (cognitively normal [CN] and impaired [IM]). CVD markers were derived from structural and quantitative magnetic resonance imaging data. RESULTS Transcapillary pulse wave delay was significantly longer in controls compared to AT biomarker-confirmed groups (A+/T-/CN P < .001, A+/T+/CN P < .001, A+/T+/IM P = .003). Intracranial low-frequency oscillations were diminished in AT biomarker-confirmed groups both CN and impaired (A+/T-/CN P = .039, A+/T+/CN P = .007, A+/T+/IM P = .011). A significantly higher presence of microhemorrhages was measured in A+/T+/CN compared to controls (P = .006). DISCUSSION Cerebrovascular markers indicate increased vessel stiffness and reduced vasomotion in AT biomarker-positive subjects during preclinical AD.
Collapse
Affiliation(s)
- Leonardo A. Rivera‐Rivera
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Laura Eisenmenger
- Department of RadiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Karly A. Cody
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Thomas Reher
- Department of RadiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Tobey Betthauser
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Robert V. Cadman
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Howard A. Rowley
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of RadiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Cynthia M. Carlsson
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Nathaniel A. Chin
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Kevin M. Johnson
- Department of Medical PhysicsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of RadiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
12
|
Long-Term Pharmacological Inhibition of the Activity of All NOS Isoforms Rather Than Genetic Knock-Out of Endothelial NOS Leads to Impaired Spatial Learning and Memory in C57BL/6 Mice. Biomedicines 2021; 9:biomedicines9121905. [PMID: 34944725 PMCID: PMC8698888 DOI: 10.3390/biomedicines9121905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Increasing epidemiological and experimental evidence points to a link between arterial stiffness and rapid cognitive decline. However, the underlying mechanism linking the two diseases is still unknown. The importance of nitric oxide synthases in both diseases is well-defined. In this study, we introduced arterial stiffness in both genetic (eNOS−/−, endothelial nitric oxide synthase knockout) and pharmacological (N(G)-nitro-L-arginine methyl ester (L-NAME) treatment) NO dysfunction models to study their association with cognitive decline. Our findings demonstrate that the non-selective inhibition of NOS activity with L-NAME induces cardiac dysfunction, arterial stiffness, and a decline in hippocampal-dependent learning and memory. This outcome demonstrates the importance of neuronal NOS (nNOS) in both cardiovascular and neurological pathophysiology and its potential contribution in the convergence between arterial stiffness and cognitive decline.
Collapse
|
13
|
Posttranscriptional regulation of Nrf2 through miRNAs and their role in Alzheimer's disease. Pharmacol Res 2021; 175:106018. [PMID: 34863823 DOI: 10.1016/j.phrs.2021.106018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
The nuclear factor erythroid-derived 2-related factor 2 (NFE2L2/Nrf2) is a pivotal facilitator of cytoprotective responses against the oxidative/electrophilic insults. Upon activation, Nrf2 induces transcription of a wide range of cytoprotective genes having antioxidant response element (ARE) in their promoter region. Dysfunction in Nrf2 signaling has been linked to the pathogenesis of AD and several studies have suggested that boosting Nrf2 expression/activity by genetic or pharmacological approaches is beneficial in AD. Among the diverse mechanisms that regulate the Nrf2 signaling, miRNAs-mediated regulation of Nrf2 has gained much attention in recent years. Several miRNAs have been reported to directly repress the post-transcriptional expression of Nrf2 and thereby negatively regulate the Nrf2-dependent cellular cytoprotective response in AD. Moreover, several Nrf2 targeting miRNAs are misregulated in AD brains. This review is focused on the role of misregulated miRNAs that directly target Nrf2, in AD pathophysiology. Here, alongside a general description of functional interactions between miRNAs and Nrf2, we have reviewed the evidence indicating the possible role of these miRNAs in AD pathogenesis.
Collapse
|
14
|
The KEAP1-NRF2 System in Healthy Aging and Longevity. Antioxidants (Basel) 2021; 10:antiox10121929. [PMID: 34943032 PMCID: PMC8750203 DOI: 10.3390/antiox10121929] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
Aging is inevitable, but the inherently and genetically programmed aging process is markedly influenced by environmental factors. All organisms are constantly exposed to various stresses, either exogenous or endogenous, throughout their lives, and the quality and quantity of the stresses generate diverse impacts on the organismal aging process. In the current oxygenic atmosphere on earth, oxidative stress caused by reactive oxygen species is one of the most common and critical environmental factors for life. The Kelch-like ECH-associated protein 1-NFE2-related factor 2 (KEAP1-NRF2) system is a critical defense mechanism of cells and organisms in response to redox perturbations. In the presence of oxidative and electrophilic insults, the thiol moieties of cysteine in KEAP1 are modified, and consequently NRF2 activates its target genes for detoxification and cytoprotection. A number of studies have clarified the contributions of the KEAP1-NRF2 system to the prevention and attenuation of physiological aging and aging-related diseases. Accumulating knowledge to control stress-induced damage may provide a clue for extending healthspan and treating aging-related diseases. In this review, we focus on the relationships between oxidative stress and aging-related alterations in the sensory, glandular, muscular, and central nervous systems and the roles of the KEAP1-NRF2 system in aging processes.
Collapse
|
15
|
Hendrickx JO, De Moudt S, Van Dam D, De Deyn PP, Fransen P, De Meyer GRY. Altered stress hormone levels affect in vivo vascular function in the hAPP23 +/- overexpressing mouse model of Alzheimer's disease. Am J Physiol Heart Circ Physiol 2021; 321:H905-H919. [PMID: 34506227 DOI: 10.1152/ajpheart.00254.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) has long been considered a brain-specific dementia syndrome. However, in recent decades, the occurrence of cardiovascular (CV) disease in the progression of AD has been confirmed by increasing epidemiological evidence. In this study, we conducted an in-depth cardiovascular characterization of a humanized amyloid precursor protein (APP) overexpressing mouse model (hAPP23+/-), which overexpresses the Swedish mutation (KM670/671NL). At the age of 6 mo, hAPP23+/- mice had a lower survival, lower body weight, and increased corticosterone and VMA levels compared with C57BL/6 littermates. Systolic blood pressure was increased in hAPP23+/- animals compared with C57BL/6 littermates, but diastolic blood pressure was not statistically different. Pulse pressure remained unchanged but abdominal and carotid pulse-wave velocity (aPWV and cPWV) were increased in hAPP23+/- compared with C57BL/6 mice. Echocardiography showed no differences in systolic or diastolic cardiac function. Ex vivo evaluation of vascular function showed decreased adreno receptor dependent vasoconstriction of hAPP23+/- aortic segments, although the isobaric biomechanics of the aortic wall were similar to C57BL/6 aortic segments. In conclusion, hAPP23+/- mice exhibited high serum corticosterone levels, elevated systolic blood pressure, and increased arterial stiffness in vivo. However, ex vivo aortic stiffness of hAPP23+/- aortic segments was not changed and vascular reactivity to α1-adrenoceptor stimulation was attenuated. These findings highlight the need for more frequent assessment of circulating stress hormone levels and PWV measurements in daily clinical practice for people at risk of AD.NEW & NOTEWORTHY We showed that male amyloid precursor protein (APP) transgenic mice have higher circulating stress hormone levels. As a result, higher systolic blood pressure and pulse-wave velocity were measured in vivo in addition to a smaller α-adrenergic receptor-dependent contraction upon ex vivo stimulation with phenylephrine. Our findings highlight the need for more frequent assessment of circulating stress hormone levels and PWV measurements in daily clinical practice for people at risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Jhana O Hendrickx
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Sofie De Moudt
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Paul Fransen
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|