1
|
Du J, Shui H, Chen R, Dong Y, Xiao C, Hu Y, Wong NK. Neuraminidase-1 (NEU1): Biological Roles and Therapeutic Relevance in Human Disease. Curr Issues Mol Biol 2024; 46:8031-8052. [PMID: 39194692 DOI: 10.3390/cimb46080475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Neuraminidases catalyze the desialylation of cell-surface glycoconjugates and play crucial roles in the development and function of tissues and organs. In both physiological and pathophysiological contexts, neuraminidases mediate diverse biological activities via the catalytic hydrolysis of terminal neuraminic, or sialic acid residues in glycolipid and glycoprotein substrates. The selective modulation of neuraminidase activity constitutes a promising strategy for treating a broad spectrum of human pathologies, including sialidosis and galactosialidosis, neurodegenerative disorders, cancer, cardiovascular diseases, diabetes, and pulmonary disorders. Structurally distinct as a large family of mammalian proteins, neuraminidases (NEU1 through NEU4) possess dissimilar yet overlapping profiles of tissue expression, cellular/subcellular localization, and substrate specificity. NEU1 is well characterized for its lysosomal catabolic functions, with ubiquitous and abundant expression across such tissues as the kidney, pancreas, skeletal muscle, liver, lungs, placenta, and brain. NEU1 also exhibits a broad substrate range on the cell surface, where it plays hitherto underappreciated roles in modulating the structure and function of cellular receptors, providing a basis for it to be a potential drug target in various human diseases. This review seeks to summarize the recent progress in the research on NEU1-associated diseases and highlight the mechanistic implications of NEU1 in disease pathogenesis. An improved understanding of NEU1-associated diseases should help accelerate translational initiatives to develop novel or better therapeutics.
Collapse
Affiliation(s)
- Jingxia Du
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Hanqi Shui
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Rongjun Chen
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yibo Dong
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Chengyao Xiao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Hu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
2
|
Jiang X, Ping Y, Chen Y, Zhu B, Fu R, Hao Y, Fan L. A study on construction of a prognosis model for liver cancer based on analgesic targets and screening therapeutic drugs. Genes Genomics 2024; 46:831-850. [PMID: 38807022 DOI: 10.1007/s13258-024-01515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/11/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Liver cancer is one of the most malignant liver diseases in the world, and the 5-year survival rate of such patients is low. Analgesics are often used to cure pain prevalent in liver cancer. The expression changes and clinical significance of the analgesic targets (ATs) in liver cancer have not been deeply understood. OBJECTIVE The purpose of this study is to clarify the expression pattern of ATs gene in liver cancer and its clinical significance. Through the comprehensive analysis of transcriptome data and clinical parameters, the prognosis model related to ATs gene is established, and the drug information sensitive to ATs is mined. METHODS The study primarily utilized transcriptomic data and clinical information from liver cancer patients sourced from The Cancer Genome Atlas (TCGA) database. These data were employed to analyze the expression of ATs, conduct survival analysis, gene set variation analysis (GSVA), immune cell infiltration analysis, establish a prognostic model, and perform other bioinformatic analyses. Additionally, data from liver cancer patients in the International Cancer Genome Consortium (ICGC) were utilized to validate the accuracy of the model. Furthermore, the impact of analgesics on key genes in the prognostic model was assessed using data from the Comparative Toxicogenomics Database (CTD). RESULTS The study investigated the differential expression of 58 ATs genes in liver cancer compared to normal tissues. Patients were stratified based on ATs expression, revealing varied survival outcomes. Functional enrichment analysis highlighted distinctions in spindle organization, centrosome, and spindle microtubule functions. Prognostic modeling identified low TP53 expression as protective, while elevated CCNA2, NEU1, and HTR2C levels posed risks. Commonly used analgesics, including acetaminophen and others, were found to influence the expression of these genes. These findings provide insights into potential therapeutic strategies for liver cancer and shed light on the molecular mechanisms underlying its progression. CONCLUSIONS The collective analysis of gene signatures associated with ATs suggests their potential as prognostic predictors in hepatocellular carcinoma patients. These findings not only offer insights into cancer therapy but also provide novel avenues for the development of indications for analgesics.
Collapse
Affiliation(s)
- Xueyan Jiang
- Peking University Cancer Hospital Inner Mongolia Hospital Pharmacy Department, Hohhot, Inner Mongolia, China
| | - Yaodong Ping
- Peking University Cancer Hospital Inner Mongolia Hospital Pharmacy Department, Hohhot, Inner Mongolia, China
- Department of Pharmacy, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuan Chen
- Peking University Cancer Hospital Inner Mongolia Hospital Pharmacy Department, Hohhot, Inner Mongolia, China
| | - Benben Zhu
- Peking University Cancer Hospital Inner Mongolia Hospital Pharmacy Department, Hohhot, Inner Mongolia, China
| | - Rong Fu
- Peking University Cancer Hospital Inner Mongolia Hospital Pharmacy Department, Hohhot, Inner Mongolia, China
| | - Yiwei Hao
- Peking University Cancer Hospital Inner Mongolia Hospital Pharmacy Department, Hohhot, Inner Mongolia, China
| | - Lei Fan
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
3
|
Yang X, Jiao Y, Zhang Y, Sun M, Gao Y, Zhou Y, Xiao H, Ren J, Zhou Z, Zhai Y, Song B, Zhang L, Kong P. Oseltamivir enhances 5-FU sensitivity in esophageal squamous carcinoma with high SPNS1. Biomed Pharmacother 2024; 173:116367. [PMID: 38460365 DOI: 10.1016/j.biopha.2024.116367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
Sphingolipid transporter 1 (SPNS1) is a significant differentially expressed gene (DEGs) in esophageal squamous cell carcinoma (ESCC). According to 3 pairs clinic cohorts, transcriptomic (155 pairs of ESCC samples and GSE53624, and proteomic data from PXD021701 including 124 ESCC samples) we found that SPNS1 was significantly higher in ESCC tissues compared to adjacent normal esophagus tissues. ESCC patients with high SPNS1 had a significantly poorer clinical prognosis than those with low SPNS1. Knockdown of SPNS1 significantly inhibited the proliferation, migration, and invasion abilities of ESCC cells, while promoting apoptosis. And overexpression of SPNS1 exhibited opposite functions. Furthermore, ESCC cells became more sensitive to 5-fluorouracil (5-FU) when SPNS1 was knocked down. Transcriptome sequencing revealed that NEU1 was one significant DEG affected by SPNS1 and positively correlated with SPNS1 expression. Oseltamivir phosphate (OP), one NEU1 inhibitor, markedly reversed 5-FU resistance, migration, and proliferation induced by high expression of SPNS1 both in vivo and in vitro. Our findings indicated that SPNS1 might promote the progression of ESCC by upregulating NEU1 expression and influencing chemotherapy sensitivity. These results provide new perceptions into potential therapeutic targets for ESCC treatment. The present study aimed to investigate the role and underlying mechanism of SPNS1 in ESCC.
Collapse
Affiliation(s)
- Xin Yang
- Translational Medicine Research Center, Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China; Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ye Jiao
- Translational Medicine Research Center, Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China; Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yingying Zhang
- Translational Medicine Research Center, Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China; Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meng Sun
- Translational Medicine Research Center, Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China; Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yingzhen Gao
- Translational Medicine Research Center, Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China; Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Zhou
- Translational Medicine Research Center, Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China; Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Heng Xiao
- Translational Medicine Research Center, Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China; Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Ren
- Translational Medicine Research Center, Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China; Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhinan Zhou
- Translational Medicine Research Center, Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China; Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuanfang Zhai
- Translational Medicine Research Center, Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China; Department of Human Anatomy, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, China
| | - Ling Zhang
- Translational Medicine Research Center, Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China; Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Pengzhou Kong
- Translational Medicine Research Center, Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China; Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China; State Key Laboratory for Pneumoconiosis of National Health Commission, Key Laboratory of Prevention, Treatment and Fundamental Studies for Respiratory Diseases of Shanxi, Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
4
|
Mahé M, Rios-Fuller TJ, Karolin A, Schneider RJ. Genetics of enzymatic dysfunctions in metabolic disorders and cancer. Front Oncol 2023; 13:1230934. [PMID: 37601653 PMCID: PMC10433910 DOI: 10.3389/fonc.2023.1230934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Inherited metabolic disorders arise from mutations in genes involved in the biogenesis, assembly, or activity of metabolic enzymes, leading to enzymatic deficiency and severe metabolic impairments. Metabolic enzymes are essential for the normal functioning of cells and are involved in the production of amino acids, fatty acids and nucleotides, which are essential for cell growth, division and survival. When the activity of metabolic enzymes is disrupted due to mutations or changes in expression levels, it can result in various metabolic disorders that have also been linked to cancer development. However, there remains much to learn regarding the relationship between the dysregulation of metabolic enzymes and metabolic adaptations in cancer cells. In this review, we explore how dysregulated metabolism due to the alteration or change of metabolic enzymes in cancer cells plays a crucial role in tumor development, progression, metastasis and drug resistance. In addition, these changes in metabolism provide cancer cells with a number of advantages, including increased proliferation, resistance to apoptosis and the ability to evade the immune system. The tumor microenvironment, genetic context, and different signaling pathways further influence this interplay between cancer and metabolism. This review aims to explore how the dysregulation of metabolic enzymes in specific pathways, including the urea cycle, glycogen storage, lysosome storage, fatty acid oxidation, and mitochondrial respiration, contributes to the development of metabolic disorders and cancer. Additionally, the review seeks to shed light on why these enzymes represent crucial potential therapeutic targets and biomarkers in various cancer types.
Collapse
Affiliation(s)
| | | | | | - Robert J. Schneider
- Department of Microbiology, Grossman NYU School of Medicine, New York, NY, United States
| |
Collapse
|
5
|
Zhou X, Chi K, Zhang C, Liu Q, Yang G. Sialylation: A Cloak for Tumors to Trick the Immune System in the Microenvironment. BIOLOGY 2023; 12:832. [PMID: 37372117 DOI: 10.3390/biology12060832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
The tumor microenvironment (TME), where the tumor cells incite the surrounding normal cells to create an immune suppressive environment, reduces the effectiveness of immune responses during cancer development. Sialylation, a type of glycosylation that occurs on cell surface proteins, lipids, and glycoRNAs, is known to accumulate in tumors and acts as a "cloak" to help tumor cells evade immunological surveillance. In the last few years, the role of sialylation in tumor proliferation and metastasis has become increasingly evident. With the advent of single-cell and spatial sequencing technologies, more research is being conducted to understand the effects of sialylation on immunity regulation. This review provides updated insights into recent research on the function of sialylation in tumor biology and summarizes the latest developments in sialylation-targeted tumor therapeutics, including antibody-mediated and metabolic-based sialylation inhibition, as well as interference with sialic acid-Siglec interaction.
Collapse
Affiliation(s)
- Xiaoman Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kaijun Chi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chairui Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Quan Liu
- Department of Medical Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Ganglong Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Ding Y, Gong Y, Zeng H, Zhou X, Yu Z, Pan J, Zhou M, Liu S, Lai W. Biological function analysis of ARHGAP39 as an independent prognostic biomarker in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:2631-2666. [PMID: 37059586 PMCID: PMC10120899 DOI: 10.18632/aging.204635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/11/2023] [Indexed: 04/16/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer, with a high morbidity and low survival rate. Rho GTPase activating protein 39 (ARHGAP39) is a crucial activating protein of Rho GTPases, a novel target in cancer therapy, and it was identified as a hub gene for gastric cancer. However, the expression and role of ARHGAP39 in hepatocellular carcinoma remain unclear. Accordingly, the cancer genome atlas (TCGA) data were used to analyze the expression and clinical value of ARHGAP39 in hepatocellular carcinoma. Further, the LinkedOmics tool suggested functional enrichment pathways for ARHGAP39. To investigate in depth the possible role of ARHGAP39 on immune infiltration, we analyzed the relationship between ARHGAP39 and chemokines in HCCLM3 cells. Finally, the GSCA website was used to explore drug resistance in patients with high ARHGAP39 expression. Studies have shown that ARHGAP39 is highly expressed in hepatocellular carcinoma and relevant to clinicopathological features. In addition, the overexpression of ARHGAP39 leads to a poor prognosis. Besides, co-expressed genes and enrichment analysis showed a correlation with the cell cycle. Notably, ARHGAP39 may worsen the survival of hepatocellular carcinoma patients by increasing the level of immune infiltration through chemokines. Moreover, N6-methyladenosine (m6A) modification-related factors and drug sensitivity were also found to be associated with ARHGAP39. In brief, ARHGAP39 is a promising prognostic factor for hepatocellular carcinoma patients that is closely related to cell cycle, immune infiltration, m6A modification, and drug resistance.
Collapse
Affiliation(s)
- Yongqi Ding
- Department of Health Management Medical, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Hong Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jingying Pan
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Shiwen Liu
- Emergency Intensive Care Unit, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Lai
- Department of Health Management Medical, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
The Prognostic Value of AT-Rich Interaction Domain (ARID) Family Members in Patients with Hepatocellular Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1150390. [PMID: 36034939 PMCID: PMC9410793 DOI: 10.1155/2022/1150390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022]
Abstract
Objective Hepatocellular carcinoma (HCC) is one of the most lethal malignancies with a poor prognosis. The AT-rich interaction domain (ARID) family plays an essential regulatory role in the pathogenesis and progression of cancers. This study aims to evaluate the prognostic value and clinical significance of human ARID family genes in HCC. Methods ONCOMINE and The Cancer Genome Atlas (TCGA) databases were employed to retrieve ARIDs expression profile and clinicopathological information of HCC. Kaplan–Meier plotter and MethSurv were applied to the survival analysis of patients with HCC. CBioPortal was used to analyze genetic mutations of ARIDs. Gene Expression Profiling Interactive Analysis (GEPIA) and Metascape were used to perform hub gene identification and functional enrichment. Results Expression levels of 11 ARIDs were upregulated in HCC, and 2 ARIDs were downregulated. Also, 4 ARIDs and 5 ARIDs were correlated with pathologic stages and histologic grades, respectively. Furthermore, higher expression of ARID1A, ARID1B, ARID2, ARID3A, ARID3B, ARID5B, KDM5A, KDM5B, KDM5C, and JARID2 was remarkably correlated with worse overall survival of patients with HCC, and the high ARID3C/KDM5D expression was related to longer overall survival. Multivariate Cox analysis indicated that ARID3A, KDM5C, and KDM5D were independent risk factors for HCC prognosis. Moreover, ARIDs mutations and 127 CpGs methylation in all ARIDs were observed to be significantly associated with the prognosis of HCC patients. Besides, our data showed that ARIDs could regulate tumor-related pathways and distinct immune cells in the HCC microenvironment. Conclusions ARIDs present the potential prognostic value for HCC. Our findings suggest that ARID3A, KDM5C, and KDM5D may be the prognostic biomarkers for patients with HCC.
Collapse
|