1
|
Kirk JS, Wang J, Long M, Rosario S, Tracz A, Ji Y, Kumar R, Liu X, Jamroze A, Singh PK, Puzanov I, Chatta G, Cheng Q, Huang J, Wrana JL, Lovell J, Yu H, Liu S, Shen MM, Liu T, Tang DG. Integrated single-cell analysis defines the epigenetic basis of castration-resistant prostate luminal cells. Cell Stem Cell 2024; 31:1203-1221.e7. [PMID: 38878775 PMCID: PMC11297676 DOI: 10.1016/j.stem.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 02/26/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024]
Abstract
Understanding prostate response to castration and androgen receptor signaling inhibitors (ARSI) is critical to improving long-term prostate cancer (PCa) patient survival. Here, we use a multi-omics approach on 229,794 single cells to create a mouse single-cell reference atlas for interpreting mouse prostate biology and castration response. Our reference atlas refines single-cell annotations and provides a chromatin context, which, when coupled with mouse lineage tracing, demonstrates that castration-resistant luminal cells are distinct from the pre-existent urethra-proximal stem/progenitor cells. Molecular pathway analysis and therapeutic studies further implicate AP1 (JUN/FOS), WNT/β-catenin, FOXQ1, NF-κB, and JAK/STAT pathways as major drivers of castration-resistant luminal populations with relevance to human PCa. Our datasets, which can be explored through an interactive portal (https://visportal.roswellpark.org/data/tang/), can aid in developing combination treatments with ARSI for advanced PCa patients.
Collapse
Affiliation(s)
- Jason S Kirk
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Jie Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mark Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Spencer Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Amanda Tracz
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Yibing Ji
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Xiaozhuo Liu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Anmbreen Jamroze
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Prashant K Singh
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Gurkamal Chatta
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Qing Cheng
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jeffrey L Wrana
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Jonathan Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Han Yu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Michael M Shen
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
2
|
Xi Y, Wen R, Zhang R, Dong Q, Hou S, Zhang S. Genetic evidence supporting a causal role of Janus kinase 2 in prostate cancer: a Mendelian randomization study. Aging Male 2023; 26:2257300. [PMID: 37706641 DOI: 10.1080/13685538.2023.2257300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Janus kinase-2 (JAK2) inhibitors are now being tried in basic research and clinical practice in prostate cancer (PCa). However, the causal relationship between JAK2 and PCa has not been uniformly described. Here, we examined the cause-effect relation between JAK2 and PCa. METHODS Two-sample Mendelian randomization (MR) analysis of genetic variation data of JAK2, PCa from IEU OpenGWAS Project was performed by inverse variance weighted, MR-Egger, and weighted median. Cochran's Q heterogeneity test and MR-Egger multiplicity analysis were performed to normalize the MR analysis results to reduce the effect of bias on the results. RESULTS Five instrumental variables were identified for further MR analysis. Specifically, combining the inverse variance-weighted (OR: 1.0009, 95% CI: 1.0001-1.0015, p = 0.02) and weighted median (OR: 1.0009, 95% CI: 1.0000-1.0017, p = 0.03). Sensitivity analysis showed that there was no heterogeneity (p = 0.448) and horizontal multiplicity (p = 0.770) among the instrumental variables. CONCLUSIONS We found JAK2 was associated with the development of PCa and was a risk factor for PCa, which might be instructive for the use of JAK2 inhibitors in PCa patients.
Collapse
Affiliation(s)
- Yujia Xi
- Department of Urology, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, PR China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, PR China
| | - Rui Wen
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, PR China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, PR China
| | - Ran Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, PR China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, PR China
| | - Qirui Dong
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, PR China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, PR China
| | - Sijia Hou
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, PR China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, PR China
- Department of Neurology, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Shengxiao Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, PR China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, PR China
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Gritsina G, Fong KW, Lu X, Lin Z, Xie W, Agarwal S, Lin D, Schiltz GE, Beltran H, Corey E, Morrissey C, Wang Y, Zhao JC, Hussain M, Yu J. Chemokine receptor CXCR7 activates Aurora Kinase A and promotes neuroendocrine prostate cancer growth. J Clin Invest 2023; 133:e166248. [PMID: 37347559 PMCID: PMC10378179 DOI: 10.1172/jci166248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
CXCR7 is an atypical chemokine receptor that recruits β-arrestin (ARRB2) and internalizes into clathrin-coated intracellular vesicles where the complex acts as a scaffold for cytoplasmic kinase assembly and signal transduction. Here, we report that CXCR7 was elevated in the majority of prostate cancer (PCa) cases with neuroendocrine features (NEPC). CXCR7 markedly induced mitotic spindle and cell cycle gene expression. Mechanistically, we identified Aurora Kinase A (AURKA), a key regulator of mitosis, as a novel target that was bound and activated by the CXCR7-ARRB2 complex. CXCR7 interacted with proteins associated with microtubules and golgi, and, as such, the CXCR7-ARRB2-containing vesicles trafficked along the microtubules to the pericentrosomal golgi apparatus, where the complex interacted with AURKA. Accordingly, CXCR7 promoted PCa cell proliferation and tumor growth, which was mitigated by AURKA inhibition. In summary, our study reveals a critical role of CXCR7-ARRB2 in interacting and activating AURKA, which can be targeted by AURKA inhibitors to benefit a subset of patients with NEPC.
Collapse
Affiliation(s)
- Galina Gritsina
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ka-wing Fong
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaodong Lu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zhuoyuan Lin
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Urology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanqing Xie
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shivani Agarwal
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dong Lin
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gary E. Schiltz
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan C. Zhao
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Human Genetics and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maha Hussain
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Human Genetics and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
4
|
Han J, Zhou Y, Zhang C, Feng J, Wang J, Guo K, Chen W, Li Y. Intratumoral immune heterogeneity of prostate cancer characterized by typing and hub genes. J Cell Mol Med 2023; 27:101-112. [PMID: 36524848 PMCID: PMC9806298 DOI: 10.1111/jcmm.17641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
Discordant abundances of different immune cell subtypes is regarded to be an essential feature of tumour tissue. Direct studies in Prostate cancer (PC) of intratumoral immune heterogeneity characterized by immune cell subtype, are still lacking. Using the single sample gene set enrichment analysis (ssGSEA) algorithm, the abundance of 28 immune cells infiltration (ICI) were determined for PC. A NMF was performed to determine tumour-sample clustering based on the abundance of ICI and PFS information. Hub genes of clusters were identified via weighted gene co-expression network analysis (WGCNA). The multivariate dimensionality reduction analysis of hub genes expression matrix was carried out via principal component analysis (PCA) to obtain immune score (IS). We analysed the correlation between clustering, IS and clinical phenotype. We divided the 495 patients into clusterA (n = 193) and clusterB (n = 302) on the basis of ICI and PFS via NMF. The progression-free survival (PFS) were better for clusterA than for clusterB (p < 0.001). Each immune cell subtypes was more abundant in clusterA than in clusterB (p < 0.001). The expression levels of CTAL-4 and PD-L1 were lower in clusterB than in clusterA (p < 0.001 and p = 0.006). We obtained 103 hub genes via WGCNA. In the training and validation cohorts, the prognosis of high IS group was worse than that of the low IS group (p < 0.05). IS had good predictive effect on 5-year PFS. The expression of immune checkpoint genes was higher in the low IS group than in the high IS group (p < 0.01). Patients with low IS and receiving hormone therapy had better prognosis than other groups. The combination of IS and clinical characteristics including lymph node metastasis and gleason score can better differentiate patient outcomes than using it alone. IS was a practical algorithm to predict the prognosis of patients. Advanced PC patients with low IS may be more sensitive to hormone therapy. CXCL10, CXCL5, MMP1, CXCL12, CXCL11, CXCL2, STAT1, IL-6 and TLR2 were hub genes, which may drive the homing of immune cells in tumours and promote immune cell differentiation.
Collapse
Affiliation(s)
- Jianpeng Han
- Department of Urology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Yan Zhou
- Department of Urology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Chundong Zhang
- Department of Function, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Jianyong Feng
- Department of Urology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Junhao Wang
- Department of Urology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Kuo Guo
- Department of Urology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Wenbin Chen
- Department of Urology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Yongzhang Li
- Department of Urology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
5
|
Deng S, Wang C, Wang Y, Xu Y, Li X, Johnson NA, Mukherji A, Lo UG, Xu L, Gonzalez J, Metang LA, Ye J, Tirado CR, Rodarte K, Zhou Y, Xie Z, Arana C, Annamalai V, Liu X, Vander Griend DJ, Strand D, Hsieh JT, Li B, Raj G, Wang T, Mu P. Ectopic JAK-STAT activation enables the transition to a stem-like and multilineage state conferring AR-targeted therapy resistance. NATURE CANCER 2022; 3:1071-1087. [PMID: 36065066 PMCID: PMC9499870 DOI: 10.1038/s43018-022-00431-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 08/02/2022] [Indexed: 02/07/2023]
Abstract
Emerging evidence indicates that various cancers can gain resistance to targeted therapies by acquiring lineage plasticity. Although various genomic and transcriptomic aberrations correlate with lineage plasticity, the molecular mechanisms enabling the acquisition of lineage plasticity have not been fully elucidated. We reveal that Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling is a crucial executor in promoting lineage plasticity-driven androgen receptor (AR)-targeted therapy resistance in prostate cancer. Importantly, ectopic JAK-STAT activation is specifically required for the resistance of stem-like subclones expressing multilineage transcriptional programs but not subclones exclusively expressing the neuroendocrine-like lineage program. Both genetic and pharmaceutical inhibition of JAK-STAT signaling resensitizes resistant tumors to AR-targeted therapy. Together, these results suggest that JAK-STAT are compelling therapeutic targets for overcoming lineage plasticity-driven AR-targeted therapy resistance.
Collapse
Affiliation(s)
- Su Deng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Choushi Wang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yunguan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yaru Xu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoling Li
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nickolas A Johnson
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Atreyi Mukherji
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - U-Ging Lo
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lingfan Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Julisa Gonzalez
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lauren A Metang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jianfeng Ye
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Kathia Rodarte
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yinglu Zhou
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Zhiqun Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carlos Arana
- Wakeland Genomics Core, UT Southwestern Medical Center, Dallas, TX, USA
| | - Valli Annamalai
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xihui Liu
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Douglas Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jer-Tsong Hsieh
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bo Li
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ganesh Raj
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ping Mu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Jung YY, Um JY, Sethi G, Ahn KS. Potential Application of Leelamine as a Novel Regulator of Chemokine-Induced Epithelial-to-Mesenchymal Transition in Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23179848. [PMID: 36077241 PMCID: PMC9456465 DOI: 10.3390/ijms23179848] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/15/2022] Open
Abstract
CXCR7 and CXCR4 are G protein-coupled receptors (GPCRs) that can be stimulated by CXCL12 in various human cancers. CXCR7/4–CXCL12 binding can initiate activation of multiple pathways including JAK/STAT and manganese superoxide dismutase (MnSOD) signaling, and initiate epithelial–mesenchymal transition (EMT) process. It is established that cancer cell invasion and migration are caused because of these events. In particular, the EMT process is an important process that can determine the prognosis for cancer. Since the antitumor effect of leelamine (LEE) has been reported in various previous studies, here, we have evaluated the influence of LEE on the CXCR7/4 signaling axis and EMT processes. We first found that LEE suppressed expression of CXCR7 and CXCR4 both at the protein and mRNA levels, and showed inhibitory effects on these chemokines even after stimulation by CXCL12 ligand. In addition, LEE also reduced the level of MnSOD and inhibited the EMT process to attenuate the invasion and migration of breast cancer cells. In addition, phosphorylation of the JAK/STAT pathway, which acts down-stream of these chemokines, was also abrogated by LEE. It was also confirmed that LEE can induce an imbalance of GSH/GSSG and increases ROS, thereby resulting in antitumor activity. Thus, we establish that targeting CXCR7/4 in breast cancer cells can not only inhibit the invasion and migration of cancer cells but also can affect JAK/STAT, EMT process, and production of ROS. Overall, the findings suggest that LEE can function as a novel agent affecting the breast cancer.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Correspondence: (G.S.); (K.S.A.); Tel.: +65-6516-3267 (G.S.); +82-2-961-2316 (K.S.A.)
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: (G.S.); (K.S.A.); Tel.: +65-6516-3267 (G.S.); +82-2-961-2316 (K.S.A.)
| |
Collapse
|
7
|
Bagheri S, Rahban M, Bostanian F, Esmaeilzadeh F, Bagherabadi A, Zolghadri S, Stanek A. Targeting Protein Kinases and Epigenetic Control as Combinatorial Therapy Options for Advanced Prostate Cancer Treatment. Pharmaceutics 2022; 14:515. [PMID: 35335890 PMCID: PMC8949110 DOI: 10.3390/pharmaceutics14030515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/02/2023] Open
Abstract
Prostate cancer (PC), the fifth leading cause of cancer-related mortality worldwide, is known as metastatic bone cancer when it spreads to the bone. Although there is still no effective treatment for advanced/metastatic PC, awareness of the molecular events that contribute to PC progression has opened up opportunities and raised hopes for the development of new treatment strategies. Androgen deprivation and androgen-receptor-targeting therapies are two gold standard treatments for metastatic PC. However, acquired resistance to these treatments is a crucial challenge. Due to the role of protein kinases (PKs) in the growth, proliferation, and metastases of prostatic tumors, combinatorial therapy by PK inhibitors may help pave the way for metastatic PC treatment. Additionally, PC is known to have epigenetic involvement. Thus, understanding epigenetic pathways can help adopt another combinatorial treatment strategy. In this study, we reviewed the PKs that promote PC to advanced stages. We also summarized some PK inhibitors that may be used to treat advanced PC and we discussed the importance of epigenetic control in this cancer. We hope the information presented in this article will contribute to finding an effective treatment for the management of advanced PC.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Bostanian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Esmaeilzadeh
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Arash Bagherabadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St, 41-902 Bytom, Poland
| |
Collapse
|