1
|
Hernandez S, Conde E, Molero A, Suarez-Gauthier A, Martinez R, Alonso M, Plaza C, Camacho C, Chantada D, Juaneda-Magdalena L, Garcia-Toro E, Saiz-Lopez P, Rojo F, Abad M, Boni V, Del Carmen S, Regojo RM, Sanchez-Frias ME, Teixido C, Paz-Ares L, Lopez-Rios F. Efficient Identification of Patients With NTRK Fusions Using a Supervised Tumor-Agnostic Approach. Arch Pathol Lab Med 2024; 148:318-326. [PMID: 37270803 DOI: 10.5858/arpa.2022-0443-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 06/06/2023]
Abstract
CONTEXT.— The neurotrophic tropomyosin receptor kinase (NTRK) family gene rearrangements have been recently incorporated as predictive biomarkers in a "tumor-agnostic" manner. However, the identification of these patients is extremely challenging because the overall frequency of NTRK fusions is below 1%. Academic groups and professional organizations have released recommendations on the algorithms to detect NTRK fusions. The European Society for Medical Oncology proposal encourages the use of next-generation sequencing (NGS) if available, or alternatively immunohistochemistry (IHC) could be used for screening with NGS confirmation of all positive IHC results. Other academic groups have included histologic and genomic information in the testing algorithm. OBJECTIVE.— To apply some of these triaging strategies for a more efficient identification of NTRK fusions within a single institution, so pathologists can gain practical insight on how to start looking for NTRK fusions. DESIGN.— A multiparametric strategy combining histologic (secretory carcinomas of the breast and salivary gland; papillary thyroid carcinomas; infantile fibrosarcoma) and genomic (driver-negative non-small cell lung carcinomas, microsatellite instability-high colorectal adenocarcinomas, and wild-type gastrointestinal stromal tumors) triaging was put forward. RESULTS.— Samples from 323 tumors were stained with the VENTANA pan-TRK EPR17341 Assay as a screening method. All positive IHC cases were simultaneously studied by 2 NGS tests, Oncomine Comprehensive Assay v3 and FoundationOne CDx. With this approach, the detection rate of NTRK fusions was 20 times higher (5.57%) by only screening 323 patients than the largest cohort in the literature (0.30%) comprising several hundred thousand patients. CONCLUSIONS.— Based on our findings, we propose a multiparametric strategy (ie, "supervised tumor-agnostic approach") when pathologists start searching for NTRK fusions.
Collapse
Affiliation(s)
- Susana Hernandez
- From the Department of Pathology, 12 de Octubre University Hospital, Research Institute 12 de Octubre University Hospital (i+12), Madrid, Spain (Hernandez, Alonso)
| | - Esther Conde
- the Department of Pathology, 12 de Octubre University Hospital, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Conde, Lopez-Rios)
| | - Aida Molero
- the Department of Pathology, Segovia General Hospital, Segovia, Spain (Molero)
| | - Ana Suarez-Gauthier
- the Department of Pathology, Jimenez Diaz Foundation University Hospital, Madrid, Spain (Suarez-Gauthier)
| | - Rebeca Martinez
- the Department of Pathology, Health Diagnostic-Grupo Quiron Salud, Madrid, Spain (Martinez)
| | - Marta Alonso
- From the Department of Pathology, 12 de Octubre University Hospital, Research Institute 12 de Octubre University Hospital (i+12), Madrid, Spain (Hernandez, Alonso)
| | - Carlos Plaza
- the Department of Pathology, Clinico San Carlos University Hospital, Madrid, Spain (Plaza)
| | - Carmen Camacho
- the Department of Pathology, Insular Materno-Infantil University Hospital, Las Palmas de Gran Canaria, Spain (Camacho)
| | - Debora Chantada
- the Department of Pathology, Alvaro Cunqueiro Hospital, Vigo, Spain (Chantada, Juaneda-Magdalena)
| | - Laura Juaneda-Magdalena
- the Department of Pathology, Alvaro Cunqueiro Hospital, Vigo, Spain (Chantada, Juaneda-Magdalena)
| | - Enrique Garcia-Toro
- the Department of Pathology, Burgos University Hospital, Burgos, Spain (Garcia-Toro, Saiz-Lopez)
| | - Patricia Saiz-Lopez
- the Department of Pathology, Burgos University Hospital, Burgos, Spain (Garcia-Toro, Saiz-Lopez)
| | - Federico Rojo
- the Institute of Health Research-Jimenez Diaz Foundation, CIBERONC, Madrid, Spain (Rojo)
| | - Mar Abad
- the Department of Pathology, Salamanca University Hospital, Salamanca, Spain (Abad)
| | - Valentina Boni
- NEXT Oncology Madrid, Quiron Salud Madrid University Hospital, Madrid, Spain (Boni)
| | - Sofia Del Carmen
- the Department of Pathology, Marques de Valdecilla University Hospital, Santander, Spain (del Carmen)
| | - Rita Maria Regojo
- the Department of Pathology, La Paz University Hospital, Madrid, Spain (Regojo)
| | | | - Cristina Teixido
- the Department of Pathology, Thoracic Oncology Unit, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain (Teixido)
| | - Luis Paz-Ares
- the Department of Oncology, 12 de Octubre University Hospital, Department of Medicine, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Paz-Ares)
| | - Fernando Lopez-Rios
- the Department of Pathology, 12 de Octubre University Hospital, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Conde, Lopez-Rios)
| |
Collapse
|
2
|
Qi C, Zhou T, Bai Y, Chen H, Yuan J, Zhao F, Liu C, Ma M, Bei T, Chen S, Zhao X, Chen C, Shen L. China special issue on gastrointestinal tumors-NTRK fusion in a large real-world population and clinical utility of circulating tumor DNA genotyping to guide TRK inhibitor treatment. Int J Cancer 2023; 153:1916-1927. [PMID: 36946696 DOI: 10.1002/ijc.34522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/23/2023]
Abstract
Neurotrophic tropomyosin receptor kinase (NTRK) gene fusions are rare oncogenic drivers and targets of TRK inhibitors in solid tumors. Little is known about NTRK fusion in Chinese patients with pan-cancer. Our study investigated the prevalence and genomic features of NTRK1/2/3 gene fusions in 67 883 Chinese patients with pan-cancer using next-generation sequencing (NGS) data and circulating tumor DNA (ctDNA) NGS to guide TRK inhibitor treatment and resistance monitoring. The prevalence of NTRK fusion (tissue NGS) in the pan-cancer population was 0.18%, with 46 unique NTRK-fusion partner pairs, of which 33 were not previously reported. NTRK2 breakpoint occurred more frequently in intron 15 than intron 12. In colorectal cancers (CRCs), compared to NTRK-negative tumors, NTRK-positive tumors displayed higher tumor mutational burden (TMB) levels (54.6 vs 17.7 mut/Mb, P < .0001). In microsatellite instability-high (MSI-H) CRC, patients with NTRK fusion had a significantly lower TMB than NTRK-negative cases (69.3 vs 79.9 mut/Mb, P = .012). The frequency of NTRK fusion in a ctDNA NGS cohort of 20 954 patients with cancer was similar to that of the tissue NGS cohort. In eight NTRK fusion ctDNA-positive patients, larotrectinib induced objective response in 75% of patients and median progression-free survival was 16.3 months. Blood samples collected from a patient with disease progression after larotrectinib treatment revealed NTRK3 G623R as the potential resistance mechanism. Our study revealed previously unreported NTRK fusion partners, associations of NTRK fusion with MSI and TMB, and the potential utility of ctDNA to screen candidates for TRK inhibitors and monitor drug resistance.
Collapse
Affiliation(s)
- Changsong Qi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ting Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yuezong Bai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Hui Chen
- Medical Affairs, 3D Medicines Inc., Shanghai, China
| | - Jiajia Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Feilong Zhao
- Medical Affairs, 3D Medicines Inc., Shanghai, China
| | - Chang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Mingyang Ma
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ting Bei
- Medical Affairs, 3D Medicines Inc., Shanghai, China
| | - Shiqing Chen
- Medical Affairs, 3D Medicines Inc., Shanghai, China
| | | | - Chunzhu Chen
- Medical Affairs, 3D Medicines Inc., Shanghai, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
3
|
Zito Marino F, Buono S, Montella M, Giannatiempo R, Messina F, Casaretta G, Arpino G, Vita G, Fiorentino F, Insabato L, Sgambato A, Orditura M, Franco R, Accardo M. NTRK gene aberrations in triple-negative breast cancer: detection challenges using IHC, FISH, RT-PCR, and NGS. J Pathol Clin Res 2023; 9:367-377. [PMID: 37143440 PMCID: PMC10397374 DOI: 10.1002/cjp2.324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 05/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is usually an aggressive disease with a poor prognosis and limited treatment options. The neurotrophic tyrosine receptor kinase (NTRK) gene fusions are cancer type-agnostic emerging biomarkers approved by the Food and Drug Administration (FDA), USA, for the selection of patients for targeted therapy. The main aim of our study was to investigate the frequency of NTRK aberrations, i.e. fusions, gene copy number gain, and amplification, in a series of TNBC using different methods. A total of 83 TNBCs were analyzed using pan-TRK immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), real-time polymerase chain reaction (RT-PCR), and RNA-based next-generation sequencing (NGS). Of 83 cases, 16 showed pan-TRK positivity although no cases had NTRK-fusions. Indeed, FISH showed four cases carrying an atypical NTRK1 pattern consisting of one fusion signal and one/more single green signals, but all cases were negative for fusion by NGS and RT-PCR testing. In addition, FISH analysis showed six cases with NTRK1 amplification, one case with NTRK2 copy number gain, and five cases with NTRK3 copy number gain, all negative for pan-TRK IHC. Our data demonstrate that IHC has a high false-positive rate for the detection of fusions and molecular testing is mandatory; there is no need to perform additional molecular tests in cases negativity for NTRK by IHC. In conclusion, the NTRK genes are not involved in fusions in TNBC, but both copy number gain and amplification are frequent events, suggesting a possible predictive role for other NTRK aberrations.
Collapse
Affiliation(s)
- Federica Zito Marino
- Pathology Unit, Department of Mental and Physical Health and Preventive MedicineUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Simona Buono
- Pathology Unit, Department of Mental and Physical Health and Preventive MedicineUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Marco Montella
- Pathology Unit, Department of Mental and Physical Health and Preventive MedicineUniversity of Campania “L. Vanvitelli”NaplesItaly
| | | | | | | | - Grazia Arpino
- Department of Clinical Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Giulia Vita
- Anatomical Pathology Department, IRCCS CROBRionero in VultureItaly
| | | | - Luigi Insabato
- Department of Advanced Biomedical Sciences, Pathology SectionUniversity of Naples “Federico II”NaplesItaly
| | - Alessandro Sgambato
- Scientific Direction, Centro di Riferimento Oncologico della Basilicata (IRCCS‐CROB)Rionero in VultureItaly
| | - Michele Orditura
- Division of Medical Oncology, Department of Precision Medicine, School of MedicineUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive MedicineUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Marina Accardo
- Pathology Unit, Department of Mental and Physical Health and Preventive MedicineUniversity of Campania “L. Vanvitelli”NaplesItaly
| |
Collapse
|
4
|
Sirico A, Simonelli S, Pignatiello S, Fulgione C, Sarno L, Chiuso F, Maruotti GM, Sansone M, Guida M, Insabato L. BDNF and NGF Expression in Preneoplastic Cervical Disease According to HIV Status. Int J Mol Sci 2023; 24:10729. [PMID: 37445902 DOI: 10.3390/ijms241310729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Neurotrophins, such as BDNF and NGF, are overexpressed in tumor cells in cervical cancer, and HIV infection is associated with the upregulation of neurotrophin expression. Therefore, we aimed to investigate whether BDNF and NGF are overexpressed in preneoplastic cervical disease from HIV-infected women. METHODS Women with preneoplastic cervical lesions (cervical intraepithelial neoplasia grade 2 or 3) were prospectively enrolled and grouped according to their HIV status. Samples from Loop Electrosurgical Excision Procedure (LEEP) for suspected cervical cancer were obtained, and immunohistochemistry was performed to evaluate BDNF and NGF expression. RESULTS We included in our analysis 12 HIV-infected patients who were matched with 23 HIV-negative patients as a control group. Immunohistochemistry analysis showed that BDNF expression was significantly higher in cervical preneoplastic lesions from HIV-positive women than in the lesions from the control group. In particular, BDNF was expressed in 8/12 HIV-positive patients and 7/23 HIV-negative patients (66.7% vs. 30.4%, χ2 = 4.227; p = 0.040). NGF expression was not significantly higher in cervical preneoplastic lesions from HIV-positive women compared with that in the lesions from the control group. In particular, NGF was expressed in 8/12 HIV-positive patients and in 12/23 HIV-negative patients (66.7% vs. 52.2% χ2 = 0.676; p = 0.411). Logistic regression analysis showed that the HIV status is an independent predictor of BDNF expression in pre-invasive preneoplastic cervical disease when considered alone (crude OR 4.6, 95% CI 0.027-20.347; p = 0.046) and when analyzed with other co-factors (adjusted OR 6.786, 95% CI 1.084-42.476; p = 0.041). CONCLUSIONS In preneoplastic cervical disease, BDNF expression is higher in HIV-infected women than in non-infected controls, and this is independent of the clinical features of the patients and from the presence of the HPV-HR genotype. BDNF can play a key role as a link between the pathways by which HIV and HPV interact to accelerate cervical cancer progression and invasion. These data can be useful to better understand the role of neurotrophins in the cancerogenesis of cervical cancer and the possible therapeutic strategies to improve disease outcomes.
Collapse
Affiliation(s)
- Angelo Sirico
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Saverio Simonelli
- Pathology Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | | | - Caterina Fulgione
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Laura Sarno
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Maria Maruotti
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Matilde Sansone
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Maurizio Guida
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Luigi Insabato
- Pathology Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
5
|
Tierno D, Grassi G, Scomersi S, Bortul M, Generali D, Zanconati F, Scaggiante B. Next-Generation Sequencing and Triple-Negative Breast Cancer: Insights and Applications. Int J Mol Sci 2023; 24:ijms24119688. [PMID: 37298642 DOI: 10.3390/ijms24119688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The poor survival of triple-negative breast cancer (TNBC) is due to its aggressive behavior, large heterogeneity, and high risk of recurrence. A comprehensive molecular investigation of this type of breast cancer using high-throughput next-generation sequencing (NGS) methods may help to elucidate its potential progression and discover biomarkers related to patient survival. In this review, the NGS applications in TNBC research are described. Many NGS studies point to TP53 mutations, immunocheckpoint response genes, and aberrations in the PIK3CA and DNA repair pathways as recurrent pathogenic alterations in TNBC. Beyond their diagnostic and predictive/prognostic value, these findings suggest potential personalized treatments in PD -L1-positive TNBC or in TNBC with a homologous recombination deficit. Moreover, the comprehensive sequencing of large genomes with NGS has enabled the identification of novel markers with clinical value in TNBC, such as AURKA, MYC, and JARID2 mutations. In addition, NGS investigations to explore ethnicity-specific alterations have pointed to EZH2 overexpression, BRCA1 alterations, and a BRCA2-delaAAGA mutation as possible molecular signatures of African and African American TNBC. Finally, the development of long-read sequencing methods and their combination with optimized short-read techniques promise to improve the efficiency of NGS approaches for future massive clinical use.
Collapse
Affiliation(s)
- Domenico Tierno
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Serena Scomersi
- Breast Unit-Azienda Sanitaria Universitaria Integrata Giuliano Isontina ASUGI, University of Trieste, 34149 Trieste, Italy
| | - Marina Bortul
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Azienda Socio-Sanitaria Territoriale di Cremona-ASST, Breast Cancer Unit and Translational Research Unit, 26100 Cremona, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
6
|
Medford AJ, Oshry L, Boyraz B, Kiedrowski L, Menshikova S, Butusova A, Dai CS, Gogakos T, Keenan JC, Occhiogrosso RH, Ryan P, Lennerz JK, Spring LM, Moy B, Ellisen LW, Bardia A. TRK inhibitor in a patient with metastatic triple-negative breast cancer and NTRK fusions identified via cell-free DNA analysis. Ther Adv Med Oncol 2023; 15:17588359231152844. [PMID: 36743521 PMCID: PMC9893401 DOI: 10.1177/17588359231152844] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Tissue-agnostic indications for targeted therapies have expanded options for patients with advanced solid tumors. The Food and Drug Administration approvals of the programmed death-ligand 1 inhibitor pembrolizumab and the TRK inhibitors larotrectinib and entrectinib provide rationale for next-generation sequencing (NGS) in effectively all advanced solid tumor patients given potential for clinical responses even in otherwise refractory disease. As proof of concept, this case report describes a 64-year-old woman with triple-negative breast cancer refractory to multiple lines of therapy, found to have a rare mutation on NGS which led to targeted therapy with meaningful response. She initially presented with metastatic recurrence 5 years after treatment for a localized breast cancer, with rapid progression through four lines of therapy in the metastatic setting, including immunotherapy, antibody-drug conjugate-based therapy, and chemotherapy. Germline genetic testing was normal. Ultimately, NGS evaluation of cell-free DNA via an 83-gene assay (Guardant Health, Inc.) identified two NTRK3 fusions: an ETV6-NTRK3 fusion associated with the rare secretory breast carcinoma, and CRTC3-NTRK3, a novel fusion partner not previously described in breast cancer. Liver biopsy was sent for whole exome sequencing and RNA-seq analysis of tissue (BostonGene, Inc., Boston, MA, USA), which provided orthogonal confirmation of both the ETV6-NTRK3 and CRTC3-NTRK3 fusions. She was started on the TRK inhibitor larotrectinib with a marked clinical and radiographic response after only 2 months of therapy. The patient granted verbal consent to share her clinical story, images, and data in this case report. This case demonstrates the significant potential benefits of NGS testing in advanced cancer and the lessons we may learn from individual patient experiences.
Collapse
Affiliation(s)
| | - Lauren Oshry
- Boston Medical Center, Boston, MA, USA,Boston University School of Medicine, Boston, MA, USA
| | - Baris Boyraz
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | | | | | | | - Charles S. Dai
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Dana Farber Cancer Institute, Boston, MA, USA
| | - Tasos Gogakos
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | | | - Rachel H. Occhiogrosso
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Dana Farber Cancer Institute, Boston, MA, USA
| | - Phoebe Ryan
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jochen K. Lennerz
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Laura M. Spring
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Beverly Moy
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Leif W. Ellisen
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Lei T, Yang Y, Shi Y, Deng X, Peng Y, Wang H, Chen T. Clinicopathological features and genomic profiles of a group of secretory breast carcinomas in which progressive cases have more complex genomic features. Diagn Pathol 2022; 17:101. [PMID: 36585729 PMCID: PMC9805283 DOI: 10.1186/s13000-022-01284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Secretory breast carcinoma (SBC) is a rare malignant breast neoplasm with distinct histological features, including solid, microcystic, tubular, and rarely papillary structures, traditionally characterized by a t (12;15) (p13:q25) translocation, which usually leads to ETV6-NTRK3 fusion, suggesting an early event in tumorigenesis. Due to the rarity of this disease, very few genome sequencing studies have been performed on a series of cases, especially progressive cases. METHODS Seven lesions from 5 patients diagnosed at the Third Affiliated Hospital of Soochow University from 2007 to 2021 were included. Clinicopathological features and prognosis/survival data were collected. Next-generation DNA sequencing was performed on six of the seven lesions. RESULTS In total, 3/7 (42.9%) lesions demonstrated estrogen receptor (ER) expression, including weak, moderate to strong staining, and no lesion demonstrated progesterone receptor (PR) expression. There were no cases of human epidermal growth factor (HER2) overexpression, and the Ki-67 index was low. S-100 and pan-TRK protein were diffusely positively expressed in all cases. All lesions were characterized by a t(12;15) (p13:q25) translocation, leading to ETV6-NTRK3 fusion confirmed by fluorescence in situ hybridization (FISH). The sequencing results showed that ETV6-NTRK3 fusion was the main driver of early tumorigenesis, while SBC with invasive biological behavior had more complex genomic variation in which TERT promoter mutation was detected. CONCLUSIONS Immunohistochemical staining of a biomarker panel, including ER, PR, HER2, Ki-67, S-100 and pan-TRK, can be used as an auxiliary diagnostic tool, and FISH detection can be used as a diagnostic tool. ETV6-NTRK3 gene fusion involving multiple sites may drive tumorigenesis, while mutations in the TERT promoter region may be a factor driving tumor progression.
Collapse
Affiliation(s)
- Ting Lei
- grid.452253.70000 0004 1804 524XDepartment of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003 P.R. China
| | - Yuyan Yang
- grid.412648.d0000 0004 1798 6160Department of Pathology, The Second Hospital of Tianjin Medical University, Tianjin, 300211 P.R. China
| | - Yongqiang Shi
- grid.452253.70000 0004 1804 524XDepartment of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003 P.R. China
| | - Xu Deng
- grid.452253.70000 0004 1804 524XDepartment of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003 P.R. China
| | - Yan Peng
- grid.452253.70000 0004 1804 524XDepartment of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003 P.R. China
| | - Hui Wang
- grid.452253.70000 0004 1804 524XDepartment of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003 P.R. China
| | - Tongbing Chen
- grid.452253.70000 0004 1804 524XDepartment of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003 P.R. China
| |
Collapse
|
8
|
Grenda T, Grenda A, Krawczyk P, Kwiatek K. Botulinum toxin in cancer therapy-current perspectives and limitations. Appl Microbiol Biotechnol 2021; 106:485-495. [PMID: 34951660 PMCID: PMC8763801 DOI: 10.1007/s00253-021-11741-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 11/25/2022]
Abstract
Abstract Different serotypes of botulinum toxins (BoNTs) act upon different types of SNARE proteins. This property is used in aesthetic medicine to treat certain eye disorders such as crossed eyes (strabismus) and uncontrolled blinking (blepharospasm), to treat muscle spasms or movement disorders, and, for the two last decades, more and more often, to provide support in cancer therapy, especially so as to obtain analgesic effects upon spastic conditions. The limited literature data also suggests that the addition of BoNTs to the culture of cancer cell lines reduces cell growth, and mitotic activity, and promotes their apoptosis. BoNTs have several advantages that can be emphasized: BoNTs act on both perfusion and oxygenation; moreover, BoNTs are considered to be safe and free of systemic side effects upon administration. Recently, advances in molecular biology techniques have allowed a wide variety of novel BoNT constructs with alternative functions. These constructs could be assessed as potential new classes of anti-cancer drugs. This creates new potential perspectives in the wider use of non-toxic modified BoNT constructs in cancer therapy. In the light of the mentioned premises and existing literature reports, the aim of this review is to summarize current data and reports considering BoNT use in cancer therapy. Key points •Botulinum toxin (BoNTs) may be useful in cancer treatment. •Botulinum toxin can serve as an analgesic after cancer radiotherapy. •Botulinum toxin has the ability to inhibit tumor growth and promote apoptosis of neoplastic cells.
Collapse
Affiliation(s)
- Tomasz Grenda
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute, Partyzantow Avenue 57, 24-100, Pulawy, Poland.
| | - Anna Grenda
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland.
| | - Paweł Krawczyk
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland
| | - Krzysztof Kwiatek
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute, Partyzantow Avenue 57, 24-100, Pulawy, Poland
| |
Collapse
|