1
|
Song B, Wu X, Zeng Y. Methyltransferase-like 3 represents a prospective target for the diagnosis and treatment of kidney diseases. Hum Genomics 2024; 18:125. [PMID: 39538346 PMCID: PMC11562609 DOI: 10.1186/s40246-024-00692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Kidney disease is marked by complex pathological mechanisms and significant therapeutic hurdles, resulting in high morbidity and mortality rates globally. A deeper understanding of the fundamental processes involved can aid in identifying novel therapeutic targets and improving treatment efficacy. Current comprehensive data analyses indicate the involvement of methyltransferase-like 3 (METTL3) and its role in RNA N6-methyladenosine methylation in various renal pathologies, including acute kidney injury, renal fibrosis, and chronic kidney disease. However, there is a paucity of thorough reviews that clarify the functional mechanisms of METTL3 and evaluate its importance in enhancing therapeutic outcomes. This review seeks to systematically examine the roles, mechanisms, and potential clinical applications of METTL3 in renal diseases. The findings presented suggest that METTL3 is implicated in the etiology and exacerbation of kidney disorders, affecting their onset, progression, malignancy, and responsiveness to chemotherapeutic agents through the regulation of specific genetic pathways. In conclusion, this review underscores a detrimental correlation between METTL3 and kidney diseases, highlighting the therapeutic promise of targeting METTL3. Additionally, it offers critical insights for researchers concerning the diagnosis, prognosis, and treatment strategies for renal conditions.
Collapse
Affiliation(s)
- Bin Song
- Department of Nephrology, People's Hospital of Deyang City, Deyang, 618000, China
| | - Xiaolong Wu
- Department of Nephrology, People's Hospital of Deyang City, Deyang, 618000, China
| | - Yan Zeng
- Department of Pediatrics, People's Hospital of Deyang City, No. 173, Section 1, Taishan North Road, Deyang, Sichuan Province, 618000, China.
| |
Collapse
|
2
|
Chen Y, Liu Y, Tu W, Chen Y, Xu C, Huang C. m6A demethylase FTO transcriptionally activated by SP1 improves ischemia reperfusion-triggered acute kidney injury by activating Ambra1/ULK1-mediated autophagy. FASEB J 2024; 38:e70118. [PMID: 39439252 PMCID: PMC11580720 DOI: 10.1096/fj.202400132rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Ischemia reperfusion (I/R) was considered as one of main causes of acute kidney injury (AKI). However, the exact mechanism remains unclear. Here, this study aimed to investigate the role and mechanism of the m6A demethylase fat mass and obesity-associated (FTO) protein in I/R-induced AKI. HK-2 cells and SD rats were utilized to establish hypoxia/reoxygenation (H/R) or I/R induced AKI models. The changes of RNAs and proteins were quantified using RT-qPCR, western blot, and immunofluorescence assays, respectively. Cell proliferation and apoptosis were assessed by CCK-8 and flow cytometry. Interactions between molecules were investigated using RIP, ChIP, Co-IP, RNA pull-down, and dual luciferase reporter assays. Global m6A quantification was evaluated by kits. TUNEL and HE staining were employed for histopathological examinations. Oxidative stress-related indicators and renal function were determined using ELISA assays. The FTO expression was downregulated in H/R-induced HK-2 cells and renal tissues from I/R-induced rats. Overexpression of FTO improved the cell viability but repressed apoptosis and oxidative stress in H/R-treated HK-2 cells, as well as enhanced renal function and alleviated kidney injury in I/R rats. Notably, the FTO overexpression significantly increased autophagy-related LC3 and ULK1 levels. When autophagy was inhibited, the protective effects of FTO in AKI were diminished. Notably, Ambra1, a crucial regulator of autophagy, was repressed in H/R-induced HK-2 cells. However, the FTO overexpression restored the Ambra1 expression by reducing m6A modification of its mRNA. SP1, acting as an upstream transcription factor, directly interacts with the FTO promoter to enhance FTO expression. Knockdown of SP1 or Ambra1 suppressed the beneficial effects of FTO upregulation on autophagy and oxidative stress injury in H/R-stimulated cells. FTO, transcriptionally activated by SP1, promoted autophagy by upregulating Ambra1/ULK1 signaling, thereby inhibiting oxidative stress and kidney injury. These findings may provide some novel insights for AKI treatment.
Collapse
Affiliation(s)
- Yan Chen
- Department of NephrologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP.R. China
| | - Yuanfei Liu
- Department of EmergencyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP.R. China
| | - Weiping Tu
- Department of NephrologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP.R. China
| | - Yanxia Chen
- Department of NephrologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP.R. China
| | - Chengyun Xu
- Department of NephrologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP.R. China
| | - Chong Huang
- Department of NephrologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP.R. China
| |
Collapse
|
3
|
Li L, Qu D, Wang B, Yuan S, Zhao Y, Liu N, Huo F, Zhang D, Zhang L. FTO blocks RNA translational activity via the loss of N6-methyladenosine methylation at 5' UTR regulated by RBM5 in cisplatin-resistant NSCLC. J Cell Physiol 2024; 239:e31296. [PMID: 38742685 DOI: 10.1002/jcp.31296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
N6-methyladenosine (m6A) methylation has been widely regarded in numerous biological functions including CR. Nonetheless, the molecular process of m6A methylation behind CR in non-small cell lung cancer (NSCLC) has no apparent significance. We identified in this study that the expression of FTO alpha-ketoglutarate dependent dioxygenase (FTO) was downregulated in CR NSCLC tissues and cells in vivo and in vitro. Additionally, RIP-seq indicated that loss of FTO contributed to the elevated m6A methylation at 5'-untranslated region of RNAs which were closely connected with tumor resistance and malignancy, and FTO exerted to exclude the recruitment of eIF3A to these target genes in CR NSCLC. Moreover, FTO-enriched transcripts displayed a reduced translational capability in CR NSCLC compared to the regular NSCLC cells. Finally, we also identified RNA binding motif protein 5 (RBM5) that could specially interact with FTO in regular NSCLC compared to CR NSCLC. Deficiency of RBM5 resulted in the abnormal recognition of transcripts by FTO, and led to the translation silencing of genes associated with CR such as ATP7A, ERCC1, CD99, CDKN3, XRCC5, and NOL3. Taken together, our data characterized FTO as a novel translation regulator and revealed the molecular mechanism on gene translation through the synergistic effects with RBM5 and m6A methylation in CR NSCLC cells.
Collapse
Affiliation(s)
- Liantao Li
- The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Debao Qu
- The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bo Wang
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shiwang Yuan
- The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Zhao
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nianli Liu
- The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fuchun Huo
- The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dan Zhang
- The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Longzhen Zhang
- The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Bai Y, Huang L, Fan Y, Li Y. Marrow mesenchymal stem cell mediates diabetic nephropathy progression via modulation of Smad2/3/WTAP/m6A/ENO1 axis. FASEB J 2024; 38:e23729. [PMID: 38847786 DOI: 10.1096/fj.202301773r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/25/2024] [Accepted: 05/24/2024] [Indexed: 11/01/2024]
Abstract
Diabetic nephropathy (DN) is one of the common microvascular complications in diabetic patients. Marrow mesenchymal stem cells (MSCs) have attracted attention in DN therapy but the underlying mechanism remains unclear. Here, we show that MSC administration alleviates high glucose (HG)-induced human kidney tubular epithelial cell (HK-2 cell) injury and ameliorates renal injury in DN mice. We identify that Smad2/3 is responsible for MSCs-regulated DN progression. The activity of Smad2/3 was predominantly upregulated in HG-induced HK-2 cell and DN mice and suppressed with MSC administration. Activation of Smad2/3 via transforming growth factor-β1 (TGF-β1) administration abrogates the protective effect of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Smad2/3 has been reported to interact with methyltransferase of N6-methyladenosine (m6A) complex and we found a methyltransferase, Wilms' tumor 1-associating protein (WTAP), is involved in MSCs-Smad2/3-regulated DN development. Moreover, WTAP overexpression abrogates the improvement of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Subsequently, α-enolase (ENO1) is the downstream target of WTAP-mediated m6A modification and contributes to the MSCs-mediated regulation. Collectively, these findings reveal a molecular mechanism in DN progression and indicate that Smad2/3/WTAP/ENO1 may present a target for MSCs-mediated DN therapy.
Collapse
Affiliation(s)
- Yihua Bai
- Department of Nephrology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lilan Huang
- Department of Nephrology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yang Fan
- Department of Nephrology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yaling Li
- Department of Nephrology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Huang F, Wang Y, Lv X, Huang C. WTAP-mediated N6-methyladenosine modification promotes the inflammation, mitochondrial damage and ferroptosis of kidney tubular epithelial cells in acute kidney injury by regulating LMNB1 expression and activating NF-κB and JAK2/STAT3 pathways. J Bioenerg Biomembr 2024; 56:285-296. [PMID: 38517565 DOI: 10.1007/s10863-024-10015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Acute kidney injury (AKI) is a serious complication of sepsis patients, but the pathogenic mechanisms underlying AKI are still largely unclear. In this view, the roles of the key component of N6-methyladenosine (m6A)-wilms tumor 1 associated protein (WTAP) in AKI progression were investigated. AKI mice model was established by using cecal ligation and puncture (CLP). AKI cell model was established by treating HK-2 cells with LPS. Cell apoptosis was analyzed by TdT-mediated dUTP Nick-End Labeling (TUNEL) staining and flow cytometry analysis. Cell viability was analyzed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The concentrations of inflammatory factors were examined with ELISA kits. Reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) and Fe2+ levels were detected with related kits. Gene expression was detected by western blot assay or quantitative real-time polymerase chain reaction (qRT-PCR) assay. The relation between WTAP and lamin B1 (LMNB1) was verified by Methylated RNA Immunoprecipitation (meRIP) assay, RIP assay, dual-luciferase reporter assay and Actinomycin D assay. CLP induced significant pathological changes in kidney tissues in mice and promoted inflammation, mitochondrial damage and ferroptosis. LMNB1 level was induced in HK-2 cells by LPS. LMNB1 knockdown promoted LPS-mediated HK-2 cell viability and inhibited LPS-mediated HK-2 cell apoptosis, inflammation, mitochondrial damage and ferroptosis. Then, WTAP was demonstrated to promote LMNB1 expression by m6A Methylation modification. Moreover, WTAP knockdown repressed LPS-treated HK-2 cell apoptosis, inflammation, mitochondrial damage and ferroptosis, while LMNB1 overexpression reversed the effects. Additionally, WTAP affected the pathways of NF-κB and JAK2/STAT3 by LMNB1. WTAP-mediated m6A promoted the inflammation, mitochondrial damage and ferroptosis in LPS-induced HK-2 cells by regulating LMNB1 expression and activating NF-κB and JAK2/STAT3 pathways.
Collapse
Affiliation(s)
- Fan Huang
- Department of Intensive Care Unit, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 4, Huancheng South Road, Longgang District, Shenzhen City, 518003, Guangdong Province, P.R. China
| | - Yuchen Wang
- Department of Intensive Care Unit, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 4, Huancheng South Road, Longgang District, Shenzhen City, 518003, Guangdong Province, P.R. China.
| | - XiaoLi Lv
- Department of Intensive Care Unit, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 4, Huancheng South Road, Longgang District, Shenzhen City, 518003, Guangdong Province, P.R. China
| | - Chenda Huang
- Department of Intensive Care Unit, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 4, Huancheng South Road, Longgang District, Shenzhen City, 518003, Guangdong Province, P.R. China.
| |
Collapse
|
6
|
Jin J, Liu XM, Shao W, Meng XM. Nucleic acid and protein methylation modification in renal diseases. Acta Pharmacol Sin 2024; 45:661-673. [PMID: 38102221 PMCID: PMC10943093 DOI: 10.1038/s41401-023-01203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Although great efforts have been made to elucidate the pathological mechanisms of renal diseases and potential prevention and treatment targets that would allow us to retard kidney disease progression, we still lack specific and effective management methods. Epigenetic mechanisms are able to alter gene expression without requiring DNA mutations. Accumulating evidence suggests the critical roles of epigenetic events and processes in a variety of renal diseases, involving functionally relevant alterations in DNA methylation, histone methylation, RNA methylation, and expression of various non-coding RNAs. In this review, we highlight recent advances in the impact of methylation events (especially RNA m6A methylation, DNA methylation, and histone methylation) on renal disease progression, and their impact on treatments of renal diseases. We believe that a better understanding of methylation modification changes in kidneys may contribute to the development of novel strategies for the prevention and management of renal diseases.
Collapse
Affiliation(s)
- Juan Jin
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xue-Mei Liu
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
7
|
Jung HR, Lee J, Hong SP, Shin N, Cho A, Shin DJ, Choi JW, Kim JI, Lee JP, Cho SY. Targeting the m 6A RNA methyltransferase METTL3 attenuates the development of kidney fibrosis. Exp Mol Med 2024; 56:355-369. [PMID: 38297163 PMCID: PMC10907702 DOI: 10.1038/s12276-024-01159-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 02/02/2024] Open
Abstract
Kidney fibrosis is a major mechanism underlying chronic kidney disease (CKD). N6-methyladenosine (m6A) RNA methylation is associated with organ fibrosis. We investigated m6A profile alterations and the inhibitory effect of RNA methylation in kidney fibrosis in vitro (TGF-β-treated HK-2 cells) and in vivo (unilateral ureteral obstruction [UUO] mouse model). METTL3-mediated signaling was inhibited using siRNA in vitro or the METTL3-specific inhibitor STM2457 in vivo and in vitro. In HK-2 cells, METTL3 protein levels increased in a dose- and time-dependent manner along with an increase in the cellular m6A levels. In the UUO model, METTL3 expression and m6A levels were significantly increased. Transcriptomic and m6A profiling demonstrated that epithelial-to-mesenchymal transition- and inflammation-related pathways were significantly associated with RNA m6A methylation. Genetic and pharmacologic inhibition of METTL3 in HK-2 cells decreased TGF-β-induced fibrotic marker expression. STM2457-induced inhibition of METTL3 attenuated the degree of kidney fibrosis in vivo. Furthermore, METTL3 protein expression was significantly increased in the tissues of CKD patients with diabetic or IgA nephropathy. Therefore, targeting alterations in RNA methylation could be a potential therapeutic strategy for treating kidney fibrosis.
Collapse
Affiliation(s)
- Hae Rim Jung
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Seung-Pyo Hong
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nayeon Shin
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Ara Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Jin Shin
- Medicine Major, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Choi
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea.
| | - Sung-Yup Cho
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Dai X, Zhou L, He X, Hua J, Chen L, Lu Y. Identification of apoptosis-related gene signatures as potential biomarkers for differentiating active from latent tuberculosis via bioinformatics analysis. Front Cell Infect Microbiol 2024; 14:1285493. [PMID: 38312744 PMCID: PMC10834671 DOI: 10.3389/fcimb.2024.1285493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Background Apoptosis is associated with the pathogenesis of Mycobacterium tuberculosis infection. This study aims to identify apoptosis-related genes as biomarkers for differentiating active tuberculosis (ATB) from latent tuberculosis infection (LTBI). Methods The tuberculosis (TB) datasets (GSE19491, GSE62525, and GSE28623) were downloaded from the Gene Expression Omnibus (GEO) database. The diagnostic biomarkers differentiating ATB from LTBI were identified by combining the data of protein-protein interaction network, differentially expressed gene, Weighted Gene Co-Expression Network Analysis (WGCNA), and receiver operating characteristic (ROC) analyses. Machine learning algorithms were employed to validate the diagnostic ability of the biomarkers. Enrichment analysis for biomarkers was established, and potential drugs were predicted. The association between biomarkers and N6-methyladenosine (m6A) or 5-methylated cytosine (m5C) regulators was evaluated. Results Six biomarkers including CASP1, TNFSF10, CASP4, CASP5, IFI16, and ATF3 were obtained for differentiating ATB from LTBI. They showed strong diagnostic performances, with area under ROC (AUC) values > 0.7. Enrichment analysis demonstrated that the biomarkers were involved in immune and inflammation responses. Furthermore, 24 drugs, including progesterone and emricasan, were predicted. The correlation analysis revealed that biomarkers were positively correlated with most m6A or m5C regulators. Conclusion The six ARGs can serve as effective biomarkers differentiating ATB from LTBI and provide insight into the pathogenesis of Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Xiaoting Dai
- Department of Infectious Diseases, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Litian Zhou
- Department of Neurosugery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Xiaopu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Hua
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Infectious Diseases, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Yingying Lu
- Department of Clinical Laboratory, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| |
Collapse
|
9
|
Qi S, Song J, Chen L, Weng H. The role of N-methyladenosine modification in acute and chronic kidney diseases. Mol Med 2023; 29:166. [PMID: 38066436 PMCID: PMC10709953 DOI: 10.1186/s10020-023-00764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
N6-methyladenosine (m6A) modification is a kind of RNA modification in which methylation occurs at the sixth N position in adenosine in RNA, which can occur in various RNAs such as mRNAs, lncRNAs and miRNAs. This is one of the most prominent and frequent posttranscriptional modifications within organisms and has been shown to function dynamically and reversibly in a variety of ways, including splicing, export, attenuation and translation initiation efficiency to regulate RNA expression. There are three main enzymes associated with m6A modification: writers, readers and erasers. Increasing evidence has shown that m6A modification is associated with the onset and development of kidney disease. In this article, we address the important physiological and pathological roles of m6A modification in kidney diseases (uremia, ischemia-reperfusion kidney injury, drug-induced kidney injury, and diabetic nephropathy) and its molecular mechanisms to provide reference for the diagnosis and clinical management of kidney diseases.
Collapse
Affiliation(s)
- Saiqi Qi
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China
| | - Jie Song
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China
| | - Linjun Chen
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China.
| | - Huachun Weng
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China.
| |
Collapse
|
10
|
Zhang C, Guan G, Wang J, Wei H, Cai J. MicroRNA-192-5p downregulates Fat Mass and Obesity-associated Protein to aggravate renal ischemia/reperfusion injury. Ren Fail 2023; 45:2285869. [PMID: 38044851 PMCID: PMC11001322 DOI: 10.1080/0886022x.2023.2285869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
Acute kidney injury (AKI) is a common disorder without effective therapy yet. Renal ischemia/reperfusion (I/R) injury is a common cause of AKI. MicroRNA miR-192-5p has been previously reported to be upregulated in AKI models. However, its functional role in renal I/R injury is not fully understood. This study aimed to investigate the effects and the underlying mechanism of miR-192-5p in renal I/R progression. Hypoxia/reoxygenation (H/R)-induced cell injury model in HK-2 cells and I/R-induced renal injury model in mice were established in this study. Cell counting kit-8 assay was performed to determine cell viability. Quantitative real-time PCR and western blot analysis were performed to detect gene expressions. Hematoxylin-eosin and periodic acid-Schiff staining were performed to observe the histopathological changes. Enzyme-linked immunosorbent assay was performed to detect the kidney markers' expression. In vivo and in vitro results showed that miR-192-5p was up-regulated in the I/R-induced mice model and H/R-induced cell model, and miR-192-5p overexpression exacerbated I/R-induced renal damage. Then, the downstream target of miR-192-5p was analyzed by combining the differentially expressed mRNAs and the predicted genes and confirmed using a dual-luciferase reporter assay. It was found that miR-192-5p was found to regulate fat mass and obesity-associated (FTO) protein expression by directly targeting the 3' untranslated region of FTO mRNA. Moreover, in vivo and in vitro studies unveiled that FTO overexpression alleviated renal I/R injury and promoted HK-2 cell viability via stimulating autophagy flux. In conclusion, miR-192-5p aggravated I/R-induced renal injury by blocking autophagy flux via down-regulating FTO.
Collapse
Affiliation(s)
- Chengjun Zhang
- Center of Organ Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Ge Guan
- Center of Organ Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jiantao Wang
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Haijian Wei
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jinzhen Cai
- Center of Organ Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
11
|
Sun Y, Jin D, Zhang Z, Ji H, An X, Zhang Y, Yang C, Sun W, Zhang Y, Duan Y, Kang X, Jiang L, Zhao X, Lian F. N6-methyladenosine (m6A) methylation in kidney diseases: Mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194967. [PMID: 37553065 DOI: 10.1016/j.bbagrm.2023.194967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The N6-methyladenosine (m6A) modification is regulated by methylases, commonly referred to as "writers," and demethylases, known as "erasers," leading to a dynamic and reversible process. Changes in m6A levels have been implicated in a wide range of cellular processes, including nuclear RNA export, mRNA metabolism, protein translation, and RNA splicing, establishing a strong correlation with various diseases. Both physiologically and pathologically, m6A methylation plays a critical role in the initiation and progression of kidney disease. The methylation of m6A may also facilitate the early diagnosis and treatment of kidney diseases, according to accumulating research. This review aims to provide a comprehensive overview of the potential role and mechanism of m6A methylation in kidney diseases, as well as its potential application in the treatment of such diseases. There will be a thorough examination of m6A methylation mechanisms, paying particular attention to the interplay between m6A writers, m6A erasers, and m6A readers. Furthermore, this paper will elucidate the interplay between various kidney diseases and m6A methylation, summarize the expression patterns of m6A in pathological kidney tissues, and discuss the potential therapeutic benefits of targeting m6A in the context of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangyu Ji
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
12
|
Wang Q, Fan X, Sheng Q, Yang M, Zhou P, Lu S, Gao Y, Kong Z, Shen N, Lv Z, Wang R. N6-methyladenosine methylation in kidney injury. Clin Epigenetics 2023; 15:170. [PMID: 37865763 PMCID: PMC10590532 DOI: 10.1186/s13148-023-01586-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Multiple mechanisms are involved in kidney damage, among which the role of epigenetic modifications in the occurrence and development of kidney diseases is constantly being revealed. However, N6-methyladenosine (M6A), a well-known post-transcriptional modification, has been regarded as the most prevalent epigenetic modifications in higher eukaryotic, which is involved in various biological processes of cells such as maintaining the stability of mRNA. The role of M6A modification in the mechanism of kidney damage has attracted widespread attention. In this review, we mainly summarize the role of M6A modification in the progression of kidney diseases from the following aspects: the regulatory pattern of N6-methyladenosine, the critical roles of N6-methyladenosine in chronic kidney disease, acute kidney injury and renal cell carcinoma, and then reveal its potential significance in the diagnosis and treatment of various kidney diseases. A better understanding of this field will be helpful for future research and clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- Qimeng Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ping Zhou
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
13
|
Hu C, Li J. Identification of lncRNA-miRNA-mRNA ceRNA network as biomarkers for acute kidney injury. Am J Transl Res 2023; 15:5730-5746. [PMID: 37854219 PMCID: PMC10579013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/25/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE Acute kidney injury (AKI) is a global problem due to its high morbidity and mortality. The aim of this study was to identify the key RNAs involved in the ischemia/reperfusion (I/R) or cisplatin (CIS) induced AKI. METHODS Gene Expression Omnibus database was used to download the microarray dataset GSE106993, GSE130814 and GSE98622. Differentially expressed lncRNAs (DE-lncRNAs) and DE-mRNAs were identified in I/R and CIS induced AKI. The target miRNAs of DE lncRNAs were predicted from miRDB, and the miRNA of lncRNA target mRNAs were predicted form StarBase dataset. The ceRNA regulatory networks, GO and KEGG enrichment analysis, and protein-protein interaction (PPI) of I/R and CIS induced AKI specific genes were constructed. The CIBESORT was applied to infer the proportion of 22 immune infiltration cells based on gene expression profiles of I/R and CIS induced AKI. RESULTS Totally, 2 DE-lncRNAs and 375 DE-mRNAs were identified in I/R and CIS induced AKI. The common ceRNA network was constructed between CIS group and I/R induced AKI group, which contained 2 lncRNAs (Platr7 and Gm15611), 65 mmu-miRNAs and 167 mRNAs. The 167 common mRNAs were enriched in the biological process of transcription regulation, metabolic process, cell proliferation, the cellular component (CC) of extracellular region and space, the molecular function of DNA binding, and transcription regulator activity in CIS and IRI induced AKI. The common 167 mRNAs involved in the MAPK signaling pathway and JAK-STAT signaling pathway were identified. Protein-Protein Interaction (PPI) Network of ceRNAs network expressed gene was constructed, including 81 nodes, which contained 3 upregulated genes and 78 downregulated genes. Among them, mitochondrial apoptosis-related genes Pmaip1 and Nptx1 showed significantly high expression in the GSE98622 and GSE106993 data sets. The investigation to the connection between the gene expression profiles and immune cell infiltration showed considerable differences in immune cell percentage between AKI group and normal group. CONCLUSION Novel lncRNAs and mRNAs were identified, which may serve as potential biomarkers to predict the diagnostic and therapeutic targets for AKI patients based on a large-scale sample. More importantly, the ceRNA network of I/R or CIS induced AKI was constructed, which provides valuable information to further explore the molecular mechanism underlying onset and progression of AKI.
Collapse
Affiliation(s)
- Chengxiao Hu
- Department of Nephrology, Liuzhou People's Hospital Liuzhou, Guangxi, China
| | - Jianfei Li
- Department of Nephrology, Liuzhou People's Hospital Liuzhou, Guangxi, China
| |
Collapse
|
14
|
Chen Z, Li Y, Yuan Y, Lai K, Ye K, Lin Y, Lan R, Chen H, Xu Y. Single-cell sequencing reveals homogeneity and heterogeneity of the cytopathological mechanisms in different etiology-induced AKI. Cell Death Dis 2023; 14:318. [PMID: 37169762 PMCID: PMC10175265 DOI: 10.1038/s41419-023-05830-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Abstract
Homogeneity and heterogeneity of the cytopathological mechanisms in different etiology-induced acute kidney injury (AKI) are poorly understood. Here, we performed single-cell sequencing (scRNA) on mouse kidneys with five common AKI etiologies (CP-Cisplatin, IRI-Ischemia-reperfusion injury, UUO-Unilateral ureteral obstruction, FA-Folic acid, and SO-Sodium oxalate). We constructed a potent multi-model AKI scRNA atlas containing 20 celltypes with 80,689 high-quality cells. The data suggest that compared to IRI and CP-AKI, FA- and SO-AKI exhibit injury characteristics more similar to UUO-AKI, which may due to tiny crystal-induced intrarenal obstruction. Through scRNA atlas, 7 different functional proximal tubular cell (PTC) subtypes were identified, we found that Maladaptive PTCs and classical Havcr1 PTCs but not novel Krt20 PTCs affect the pro-inflammatory and pro-fibrotic levels in different AKI models. And cell death and cytoskeletal remodeling events are widespread patterns of injury in PTCs. Moreover, we found that programmed cell death predominated in PTCs, whereas apoptosis and autophagy prevailed in the remaining renal tubules. We also identified S100a6 as a novel AKI-endothelial injury biomarker. Furthermore, we revealed that the dynamic and active immune (especially Arg1 Macro_2 cells) -parenchymal cell interactions are important features of AKI. Taken together, our study provides a potent resource for understanding the pathogenesis of AKI and early intervention in AKI progression at single-cell resolution.
Collapse
Affiliation(s)
- Zhimin Chen
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yinshuang Li
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ying Yuan
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Kunmei Lai
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Keng Ye
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yujiao Lin
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ruilong Lan
- Central laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Hong Chen
- Department of Pathology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Central laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
15
|
Ni WJ, Lu H, Ma NN, Hou BB, Zeng J, Zhou H, Shao W, Meng XM. RNA N 6 -methyladenosine modifications and potential targeted therapeutic strategies in kidney disease. Br J Pharmacol 2023; 180:5-24. [PMID: 36196023 DOI: 10.1111/bph.15968] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modifications have received increasing attention and have been shown to be extensively involved in kidney development and disease progression. Among them, the most common RNA modification, N6 -methyladenosine (m6 A), has been shown to dynamically and reversibly exert its functions in multiple ways, including splicing, export, decay and translation initiation efficiency to regulate mRNA fate. Moreover, m6 A has also been reported to exert biological effects by destabilizing base pairing to modulate various functions of RNAs. Most importantly, an increasing number of kidney diseases, such as renal cell carcinoma, acute kidney injury and chronic kidney disease, have been found to be associated with aberrant m6 A patterns. In this review, we comprehensively review the critical roles of m6 A in kidney diseases and discuss the possibilities and relevance of m6 A-targeted epigenetic therapy, with an integrated comprehensive description of the detailed alterations in specific loci that contribute to cellular processes that are associated with kidney diseases.
Collapse
Affiliation(s)
- Wei-Jian Ni
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China.,Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hao Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Nan-Nan Ma
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Bing-Bing Hou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jing Zeng
- Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
16
|
Cisplatin nephrotoxicity: new insights and therapeutic implications. Nat Rev Nephrol 2023; 19:53-72. [PMID: 36229672 DOI: 10.1038/s41581-022-00631-7] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2022] [Indexed: 11/08/2022]
Abstract
Cisplatin is an effective chemotherapeutic agent for various solid tumours, but its use is limited by adverse effects in normal tissues. In particular, cisplatin is nephrotoxic and can cause acute kidney injury and chronic kidney disease. Preclinical studies have provided insights into the cellular and molecular mechanisms of cisplatin nephrotoxicity, which involve intracellular stresses including DNA damage, mitochondrial pathology, oxidative stress and endoplasmic reticulum stress. Stress responses, including autophagy, cell-cycle arrest, senescence, apoptosis, programmed necrosis and inflammation have key roles in the pathogenesis of cisplatin nephrotoxicity. In addition, emerging evidence suggests a contribution of epigenetic changes to cisplatin-induced acute kidney injury and chronic kidney disease. Further research is needed to determine how these pathways are integrated and to identify the cell type-specific roles of critical molecules involved in regulated necrosis, inflammation and epigenetic modifications in cisplatin nephrotoxicity. A number of potential therapeutic targets for cisplatin nephrotoxicity have been identified. However, the effects of renoprotective strategies on the efficacy of cisplatin chemotherapy needs to be thoroughly evaluated. Further research using tumour-bearing animals, multi-omics and genome-wide association studies will enable a comprehensive understanding of the complex cellular and molecular mechanisms of cisplatin nephrotoxicity and potentially lead to the identification of specific targets to protect the kidney without compromising the chemotherapeutic efficacy of cisplatin.
Collapse
|
17
|
Mao Y, Jiang F, Xu XJ, Zhou LB, Jin R, Zhuang LL, Juan CX, Zhou GP. Inhibition of IGF2BP1 attenuates renal injury and inflammation by alleviating m6A modifications and E2F1/MIF pathway. Int J Biol Sci 2023; 19:593-609. [PMID: 36632449 PMCID: PMC9830505 DOI: 10.7150/ijbs.78348] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
Septic acute kidney injury (AKI) is characterized by inflammation. Pyroptosis often occurs during AKI and is associated with the development of septic AKI. This study found that induction of insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) to a higher level can induce pyroptosis in renal tubular cells. Meanwhile, macrophage migration inhibitory factor (MIF), a subunit of NLRP3 inflammasomes, was essential for IGF2BP1-induced pyroptosis. A putative m6A recognition site was identified at the 3'-UTR region of E2F transcription factor 1 (E2F1) mRNA via bioinformatics analyses and validated using mutation and luciferase experiments. Further actinomycin D (Act D) chase experiments showed that IGF2BP1 stabilized E2F1 mRNA dependent on m6A. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) indicated that E2F1 acted as a transcription factor to promote MIF expression. Thus, IGF2BP1 upregulated MIF through directly upregulating E2F1 expression via m6A modification. Experiments on mice with cecum ligation puncture (CLP) surgery verified the relationships between IGF2BP1, E2F1, and MIF and demonstrated the significance of IGF2BP1 in MIF-associated pyroptosis in vivo. In conclusion, IGF2BP1 was a potent pyroptosis inducer in septic AKI through targeting the MIF component of NLRP3 inflammasomes. Inhibiting IGF2BP1 could be an alternate pyroptosis-based treatment for septic AKI.
Collapse
Affiliation(s)
- Yan Mao
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xue-Jiao Xu
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lan-Bo Zhou
- Department of Dermatology, Suzhou Hospital, Nanjing Medical University, Suzhou, China
| | - Rui Jin
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Li-Li Zhuang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chen-Xia Juan
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,✉ Corresponding authors: Guo-Ping Zhou, Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China. E-mail: ; Chen-Xia Juan, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China. E-mail:
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China.,✉ Corresponding authors: Guo-Ping Zhou, Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China. E-mail: ; Chen-Xia Juan, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China. E-mail:
| |
Collapse
|
18
|
Luan J, Kopp JB, Zhou H. N6-methyladenine RNA Methylation Epigenetic Modification and Kidney Diseases. Kidney Int Rep 2022; 8:36-50. [PMID: 36644366 PMCID: PMC9831943 DOI: 10.1016/j.ekir.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
RNA methylation modification is a rapidly developing field in epigenetics. N6-methyladensine (m6A) is the most common internal modification in eukaryotic mRNA. m6A group regulates RNA splicing, stability, translocation, and translation. Enzymes catalyzing this process were termed as writers, erasers, and readers. Recent studies have focused on exploring the role of RNA methylation in human diseases. RNA methylation modifications, particularly m6A, play important roles in the pathogenesis of kidney diseases. In this review, we provide a brief description of m6A and summarize the impact of m6A on acute and chronic kidney disease (CKD) and possible future study directions for this research.
Collapse
Affiliation(s)
- Junjun Luan
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jeffrey B. Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, Bethesda, Maryland, USA,Jeffrey B. Kopp, Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, 10 Center Drive, 3N116, Bethesda, Maryland 20892-1268, USA.
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China,Correspondence: Hua Zhou, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning 110004, China.
| |
Collapse
|