1
|
Hua M, Zhai X, Chen Y, Yin D. METTL3-mediated m6A modification of CDCA7 mRNA promotes COAD progression. Pathol Res Pract 2024; 260:155437. [PMID: 38959625 DOI: 10.1016/j.prp.2024.155437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Colon adenocarcinoma (COAD) represents a frequent malignant tumor of the digestive system with high mortality and poor prognosis. As a prevalent internal mRNA modification in eukaryotic cells, N6-methyladenosine (m6A) has been reported to participate in tumor malignancy. This study is designed to explore the role and mechanism of Methyltransferase-like 3 (METTL3) in the progression of COAD. METHODS In this research, the GEPIA database was applied to analyze the relationship between COAD and cell division cycle-associated protein 7 (CDCA7) or METTL3. Cell viability, cell cycle progression, apoptosis, migration, and invasion were detected by Cell Counting Kit-8 (CCK-8), flow cytometry, transwell assays. The glycolysis level was detected via specific kits. CDCA7, E-cadherin, N-cadherin, and METTL3 protein levels were determined by western blot assay. The biological role of CDCA7 on COAD tumor growth was examined by the xenograft tumor model in vivo. After RBPsuite analysis, the interaction between METTL3 and CDCA7 was verified by methylated RNA immunoprecipitation (MeRIP). RESULTS METTL3 and CDCA7 were highly expressed in COAD tissues and cells. Furthermore, the silencing of CDCA7 hindered COAD cell proliferation, migration, invasion, glycolysis, EMT, and promoted apoptosis in vitro, as well as retarded tumor growth in vivo. At the molecular level, METTL3 might enhance the stability of CDCA7 mRNA via m6A methylation. CONCLUSION METTL3 contributes to the malignant progression of COAD cells partly by regulating the stability of CDCA7 mRNA, providing a promising therapeutic target for COAD treatment.
Collapse
Affiliation(s)
- Mei Hua
- Department of Oncology, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, Nantong 226000, China
| | - Xiaolu Zhai
- Department of Oncology, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, Nantong 226000, China
| | - Ying Chen
- Department of Oncology, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, Nantong 226000, China
| | - Dian Yin
- Department of Oncology, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, Nantong 226000, China.
| |
Collapse
|
2
|
Ye W, Liang X, Chen G, Chen Q, Zhang H, Zhang N, Huang Y, Cheng Q, Chen X. NDC80/HEC1 promotes macrophage polarization and predicts glioma prognosis via single-cell RNA-seq and in vitro experiment. CNS Neurosci Ther 2024; 30:e14850. [PMID: 39021287 PMCID: PMC11255415 DOI: 10.1111/cns.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
INTRODUCTION Glioma is the most frequent and lethal form of primary brain tumor. The molecular mechanism of oncogenesis and progression of glioma still remains unclear, rendering the therapeutic effect of conventional radiotherapy, chemotherapy, and surgical resection insufficient. In this study, we sought to explore the function of HEC1 (highly expressed in cancer 1) in glioma; a component of the NDC80 complex in glioma is crucial in the regulation of kinetochore. METHODS Bulk RNA and scRNA-seq analyses were used to infer HEC1 function, and in vitro experiments validated its function. RESULTS HEC1 overexpression was observed in glioma and was indicative of poor prognosis and malignant clinical features, which was confirmed in human glioma tissues. High HEC1 expression was correlated with more active cell cycle, DNA-associated activities, and the formation of immunosuppressive tumor microenvironment, including interaction with immune cells, and correlated strongly with infiltrating immune cells and enhanced expression of immune checkpoints. In vitro experiments and RNA-seq further confirmed the role of HEC1 in promoting cell proliferation, and the expression of DNA replication and repair pathways in glioma. Coculture assay confirmed that HEC1 promotes microglial migration and the transformation of M1 phenotype macrophage to M2 phenotype. CONCLUSION Altogether, these findings demonstrate that HEC1 may be a potential prognostic marker and an immunotherapeutic target in glioma.
Collapse
Affiliation(s)
- Weijie Ye
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Xisong Liang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
| | - Ge Chen
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Qiao Chen
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Hao Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Nan Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yuanfei Huang
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| |
Collapse
|
3
|
Wu Z, Zhuo T, Li Z, Zhu Y, Wu J, Liang G, Dai L, Wang Y, Tan X, Chen M. High SGO2 predicted poor prognosis and high therapeutic value of lung adenocarcinoma and promoted cell proliferation, migration, invasion, and epithelial-to-mesenchymal transformation. J Cancer 2023; 14:2301-2314. [PMID: 37576392 PMCID: PMC10414046 DOI: 10.7150/jca.86285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Shugoshin 2 (SGO2), a component of the cell division cohesion complex, is involved in both mitotic and meiotic processes. Despite being overexpressed in various malignant tumors and is associated with poor prognosis, its exact role in lung adenocarcinoma (LUAD) and its biological effects on lung cancer cells are not well understood. Methods: The transcriptomics data and clinical information for LUAD were obtained from TCGA and GEO, and DEGs associated with prognostic risk factors were screened using Cox regression analysis and chi-square testing. Identify these gene functions using correlation heatmaps, protein interaction networks (PPIs), and KEGG enrichment assays. The expression of SGO2 in tissues was verified by PCR and IHC, and the prognostic value of SGO2 in LUAD was evaluated by survival analysis. In addition, the effects of SGO2 knockdown on lung cancer cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) were studied in vitro. After that, the TIMER database and single-sample GSEA (ssGSEA) analysis were used to investigate the correlation between SGO2 and immune infiltration. Finally, the tumor mutational burden (TMB) of different SGO2 clusters and the efficacy of the two clusters in multiple treatments were evaluated. Results: High-risk genes associated with poor prognosis in LUAD are involved in cell cycle regulation and proliferation. Among these genes, SGO2 exhibited high expression in LUAD and corresponded with the TNM stage. Furthermore, the knockdown of SGO2 led to a decrease in the proliferation, migration, invasion, and EMT processes of lung cancer cells. Notably, high SGO2 expression may have poorer anti-tumor immunity and may therefore be more suitable for immunotherapy to re-establish immune function, while its high expression with a higher TMB could enable LUAD to benefit from multiple therapies. Conclusion: Our findings suggest that SGO2 may be a promising prognostic biomarker for LUAD, particularly in regulating the cell cycle and benefiting from multiple therapies.
Collapse
Affiliation(s)
- Zuotao Wu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ting Zhuo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zihao Li
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yongjie Zhu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiejing Wu
- Department of Ophthalmology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Guanbiao Liang
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lei Dai
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yongyong Wang
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiang Tan
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Mingwu Chen
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Dheekollu J, Wiedmer A, Soldan SS, Castro- Muñoz LJ, Chen C, Tang HY, Speicher DW, Lieberman PM. Regulation of EBNA1 protein stability and DNA replication activity by PLOD1 lysine hydroxylase. PLoS Pathog 2023; 19:e1010478. [PMID: 37262099 PMCID: PMC10263308 DOI: 10.1371/journal.ppat.1010478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/13/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus that is causally associated with various malignancies and autoimmune disease. Epstein-Barr Nuclear Antigen 1 (EBNA1) is the viral-encoded DNA binding protein required for viral episome maintenance and DNA replication during latent infection in proliferating cells. EBNA1 is known to be a highly stable protein, but the mechanisms regulating protein stability and how this may be linked to EBNA1 function is not fully understood. Proteomic analysis of EBNA1 revealed interaction with Procollagen Lysine-2 Oxoglutarate 5 Dioxygenase (PLOD) family of proteins. Depletion of PLOD1 by shRNA or inhibition with small molecule inhibitors 2,-2' dipyridyl resulted in the loss of EBNA1 protein levels, along with a selective growth inhibition of EBV-positive lymphoid cells. PLOD1 depletion also caused a loss of EBV episomes from latently infected cells and inhibited oriP-dependent DNA replication. Mass spectrometry identified EBNA1 peptides with lysine hydroxylation at K460 or K461. Mutation of K460, but not K461 abrogates EBNA1-driven DNA replication of oriP, but did not significantly affect EBNA1 DNA binding. Mutations in both K460 and K461 perturbed interactions with PLOD1, as well as decreased EBNA1 protein stability. These findings suggest that PLOD1 is a novel interaction partner of EBNA1 that regulates EBNA1 protein stability and function in viral plasmid replication, episome maintenance and host cell survival.
Collapse
Affiliation(s)
- Jayaraju Dheekollu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Andreas Wiedmer
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Samantha S. Soldan
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | | | - Christopher Chen
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Hsin-Yao Tang
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - David W. Speicher
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Paul M. Lieberman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Noei-Khesht Masjedi M, Asgari Y, Sadroddiny E. Differential expression analysis in epithelial ovarian cancer using functional genomics and integrated bioinformatics approaches. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
6
|
SGOL2 promotes prostate cancer progression by inhibiting RAB1A ubiquitination. Aging (Albany NY) 2022; 14:10050-10066. [PMID: 36566018 PMCID: PMC9831743 DOI: 10.18632/aging.204443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer is the most prevalent genitourinary malignant cancer in men worldwide. Patients with prostate cancer who progress to castration-resistant prostate cancer (CRPC) or metastatic CRPC have significantly poorer survival. Advanced prostate cancer is a clinical challenge due to the lack of effective treatment strategies. In the field of oncology, SGOL2 was an emerging and differentially expressed molecule, which enhanced the proliferation of cell populations in vitro in our studies. Mass spectrum and Co-IP validated the interaction of SGOL2 and RAB1A in a protein-protein manner. We further investigated the role of SGOL2 in the regulatory mechanism of RAB1A in prostate cancer cell lines. Furthermore, SGOL2 regulated RAB1A expression by inhibiting its ubiquitination. Rescue Experiments demonstrated that SGOL2 promoted prostate cancer cell proliferation and migration by upregulating RAB1A expression. Finally, we found that SGOL2 and RAB1A may regulate the tumor microenvironment (TME) in prostate cancer. In conclusion, our findings concluded that SGOL2 stabilized RAB1A expression to promote prostate cancer development. Both of them were of great importance in TME modulation.
Collapse
|
7
|
Zhang J, Tian Y, Mo S, Fu X. Overexpressing PLOD Family Genes Predict Poor Prognosis in Pancreatic Cancer. Int J Gen Med 2022; 15:3077-3096. [PMID: 35330878 PMCID: PMC8938171 DOI: 10.2147/ijgm.s341332] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Background Pancreatic cancer is a common malignant tumor. Multiple studies have shown that procollagen lysyl-hydroxylase (PLOD) family genes were closely related to tumor progression and metastasis in a variety of human cancers. This study aimed to explore the prognosis and biological role of PLOD family genes in pancreatic adenocarcinoma (PAAD). Methods GEPIA, GEO, HPA, CCLE, Kaplan-Meier plotter, cBioPortal, LinkedOmics, DAVID6.8, STRING, and TIMER were employed to determine the prognostic values and biological function of PLOD family members in PAAD. Results The mRNA and protein expression patterns of PLOD family members were noticeably up-regulated in PAAD compared with normal tissues. PLOD family gene expression was also up-regulated in pancreatic cancer cell lines. PLOD1 was correlated with histological and pathological grades of pancreatic cancer. PLOD2 was related to histological grade. The high expression of PLOD1-2 was correlated with the poor overall survival rate and relapse-free survival rate in patients with PAAD. Additionally, PLODs showed high sensitivity and specificity in distinguishing pancreatic cancer from normal tissues. Through the functional enrichment analysis of PLOD-related genes in PAAD, we found that PLODs were enriched in collagen fiber tissue structure, lysine degradation, and collagen biosynthesis. Pathway analysis confirmed that PLODs regulated the proliferation, migration, and metastasis of pancreatic cancer through the RalGEF-Ral signaling pathway. Furthermore, the level of expression of PLOD1-2 was positively correlated with the activity of tumor-infiltrating immune cells, including CD8+T cells, neutrophils, macrophages, and dendritic cells. The level of expression of PLOD3 was inversely correlated with the level of infiltration of CD8+T cells. PLOD1 and PLOD2 were highly expressed in pancreatic cancer tissues with TP53 and KRAS mutations, respectively. However, the level of expression of PLOD3 in SMAD4 wild-type pancreatic cancer was increased. Conclusion The findings showed that individual PLOD genes or PLOD family genes could be potential prognostic biomarkers for PAAD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biliary and Pancreatic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
- The Fifth People’s Hospital of Datong, Datong, Shanxi Province, 037006, People’s Republic of China
| | - YanZhang Tian
- Department of Biliary and Pancreatic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| | - ShaoJian Mo
- Department of Biliary and Pancreatic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| | - XiFeng Fu
- Department of Biliary and Pancreatic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| |
Collapse
|
8
|
Deng M, Li S, Mei J, Lin W, Zou J, Wei W, Guo R. High SGO2 Expression Predicts Poor Overall Survival: A Potential Therapeutic Target for Hepatocellular Carcinoma. Genes (Basel) 2021; 12:genes12060876. [PMID: 34200261 PMCID: PMC8226836 DOI: 10.3390/genes12060876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/08/2023] Open
Abstract
Shugoshin2 (SGO2) may participate in the occurrence and development of tumors by regulating abnormal cell cycle division, but its prognostic value in hepatocellular carcinoma (HCC) remains unclear. In this study, we accessed The Cancer Genome Atlas (TCGA) database to get the clinical data and gene expression profile of HCC. The expression of SGO2 in HCC tissues and nontumor tissues and the relationship between SGO2 expression, survival, and clinicopathological parameters were analyzed. The SGO2 expression level was significantly higher in HCC tissues than in nontumor tissues (p < 0.001). An analysis from the Oncomine and Gene Expression Profiling Interactive Analysis 2 (GEPIA2) databases also demonstrated that SGO2 was upregulated in HCC (all p < 0.001). A logistic regression analysis revealed that the high expression of SGO2 was significantly correlated with gender, tumor grade, pathological stage, T classification, and Eastern Cancer Oncology Group (ECOG) score (all p < 0.05). The overall survival (OS) of HCC patients with higher SGO2 expression was significantly poor (p < 0.001). A multivariate analysis showed that age and high expression of SGO2 were independent predictors of poor overall survival (all p < 0.05). Twelve signaling pathways were significantly enriched in samples with the high-SGO2 expression phenotype. Ten proteins and 34 genes were significantly correlated with SGO2. In conclusion, the expression of SGO2 is closely related to the survival of HCC. It may be used as a potential therapeutic target and prognostic marker of HCC.
Collapse
Affiliation(s)
- Min Deng
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (M.D.); (S.L.); (J.M.); (W.L.); (J.Z.); (W.W.)
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shaohua Li
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (M.D.); (S.L.); (J.M.); (W.L.); (J.Z.); (W.W.)
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jie Mei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (M.D.); (S.L.); (J.M.); (W.L.); (J.Z.); (W.W.)
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wenping Lin
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (M.D.); (S.L.); (J.M.); (W.L.); (J.Z.); (W.W.)
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jingwen Zou
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (M.D.); (S.L.); (J.M.); (W.L.); (J.Z.); (W.W.)
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wei Wei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (M.D.); (S.L.); (J.M.); (W.L.); (J.Z.); (W.W.)
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Rongping Guo
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (M.D.); (S.L.); (J.M.); (W.L.); (J.Z.); (W.W.)
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Correspondence: ; Tel.: +86-188-1980-9988
| |
Collapse
|