1
|
Han Y, Zhou M, Wang B, Jiang J. Morphogen-induced kinase condensates transduce Hh signal by allosterically activating Gli. SCIENCE ADVANCES 2025; 11:eadq1790. [PMID: 39792672 PMCID: PMC11721587 DOI: 10.1126/sciadv.adq1790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Hedgehog (Hh) morphogen governs embryonic development and tissue homeostasis through the Ci/Gli family transcription factors. Here we report that Hh induces phase separation of the fused (Fu)/Ulk family kinases to allosterically regulate Ci/Gli. We find that Hh-induced phosphorylation of Fu/Ulk3 promotes SUMOylation of their inverted phosphorylation-dependent SUMOylation motifs. Subsequent interaction between SUMO and SUMO-interacting motif drives Fu/Ulk3 self-assembly to form biomolecular condensates that recruit Ci-Sufu and Gli-Sufu in the cytoplasm and primary cilium, respectively. Within the condensates, Fu/Ulk3 undergoes a conformational change to expose Ci/Gli for Fu/Ulk3-mediated phosphorylation and activation, leading to gradual accumulation of nuclear CiA/GliA transcriptional complexes in proportion to ligand dose and exposure time. Our findings provide mechanistic insights into the spatiotemporal control of Hh signal transduction, reveal previously unexplored regulatory mechanism and function for biomolecular condensation, and establish a paradigm for kinase-mediated signal transduction whereby a kinase allosterically activates its substrate through ligand-induced and condensation-driven conformational change.
Collapse
Affiliation(s)
- Yuhong Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mengmeng Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bing Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Rajendran A, Castañeda CA. Protein quality control machinery: regulators of condensate architecture and functionality. Trends Biochem Sci 2025:S0968-0004(24)00275-5. [PMID: 39755440 DOI: 10.1016/j.tibs.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Protein quality control (PQC) mechanisms including the ubiquitin (Ub)-proteasome system (UPS), autophagy, and chaperone-mediated refolding are essential to maintain protein homeostasis in cells. Recent studies show that these PQC mechanisms are further modulated by biomolecular condensates that sequester PQC components and compartmentalize reactions. Accumulating evidence points towards the PQC machinery playing a pivotal role in regulating the assembly, disassembly, and viscoelastic properties of several condensates. Here, we discuss how the PQC machinery can form their own condensates and also be recruited to known condensates under physiological or stress-induced conditions. We present molecular insights into how the multivalent architecture of polyUb chains, Ub-binding adaptor proteins, and other PQC machinery contribute to condensate assembly, leading to the regulation of downstream PQC outcomes and therapeutic potential.
Collapse
Affiliation(s)
- Anitha Rajendran
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Carlos A Castañeda
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA; Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
3
|
Gutierrez-Morton E, Wang Y. The role of SUMOylation in biomolecular condensate dynamics and protein localization. CELL INSIGHT 2024; 3:100199. [PMID: 39399482 PMCID: PMC11467568 DOI: 10.1016/j.cellin.2024.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 10/15/2024]
Abstract
As a type of protein post-translational modification, SUMOylation is the process that attaches a small ubiquitin-like modifier (SUMO) to lysine residues of protein substrates. Not only do SUMO and ubiquitin exhibit structure similarity, but the enzymatic cascades for SUMOylation and ubiquitination are also similar. It is well established that protein ubiquitination triggers proteasomal degradation, but the function of SUMOylation remains poorly understood compared to ubiquitination. Recent studies reveal the role of SUMOylation in regulating protein localization, stability, and interaction networks. SUMO can be covalently attached to substrates either as an individual monomer (monoSUMOylation) or as a polymeric SUMO chain (polySUMOylation). Strikingly, mono- and polySUMOylation likely play distinct roles in protein subcellular localization and the assembly/disassembly of biomolecular condensates, which are membraneless cellular compartments with concentrated biomolecules. In this review, we summarize the recent advances in the understanding of the function and regulation of SUMOylation, which could reveal potential therapeutic targets in disease pathogenesis.
Collapse
Affiliation(s)
- Emily Gutierrez-Morton
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| |
Collapse
|
4
|
Saha A, Mousa R, Alalouf Y, Sadhu P, Hasan M, Mandal S, Mann G, Brik A. Suspension Bead Loading (SBL): An Economical Protein Delivery Platform to Study URM1's Behavior in Live Cells. Angew Chem Int Ed Engl 2024; 63:e202410135. [PMID: 39246272 DOI: 10.1002/anie.202410135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
Uniquely modified synthetic proteins are difficult to produce in large quantities, which could limit their use in various in vitro settings and in cellular studies. In this study, we developed a method named "suspension bead loading" (SBL), to deliver protein molecules into suspended living cells using glass beads, which significantly reduces the amount of protein required for effective delivery. We investigated the delivery efficiency of functionally different proteins and evaluated the cytotoxic effect of our method and the chemical and functional integrity of the delivered protein. We utilized SBL to address questions related to ubiquitin-related modifier 1 (URM1). Employing minimal protein quantities, SBL has enabled us to study its behavior within live cells under different redox conditions, including subcellular localization and conjugation patterns. We demonstrate that oxidative stress alters both the localization and conjugation pattern of URM1 in cells, highlighting its possible role in cellular response to such extreme conditions.
Collapse
Affiliation(s)
- Abhishek Saha
- Birla Instandte of Technology and Science, Pilani, Hyderabad Campus, Jawaharnagar Kapra Mandal, Medchal District, 500078, Hyderabad, Telangana, India
| | - Reem Mousa
- Schulich Faculty of Chemistry, Technion-Israel, Institute of Technology, 3200008, Haifa, Israel
| | - Yam Alalouf
- Schulich Faculty of Chemistry, Technion-Israel, Institute of Technology, 3200008, Haifa, Israel
| | - Pradeep Sadhu
- Schulich Faculty of Chemistry, Technion-Israel, Institute of Technology, 3200008, Haifa, Israel
| | - Mahdi Hasan
- Schulich Faculty of Chemistry, Technion-Israel, Institute of Technology, 3200008, Haifa, Israel
| | - Shaswati Mandal
- Schulich Faculty of Chemistry, Technion-Israel, Institute of Technology, 3200008, Haifa, Israel
| | - Guy Mann
- Schulich Faculty of Chemistry, Technion-Israel, Institute of Technology, 3200008, Haifa, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel, Institute of Technology, 3200008, Haifa, Israel
| |
Collapse
|
5
|
Zhou M, Han Y, Jiang J. Phosphorylation-induced SUMOylation promotes Ulk4 condensation at ciliary tip to transduce Hedgehog signal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613872. [PMID: 39605492 PMCID: PMC11601359 DOI: 10.1101/2024.09.19.613872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Hedgehog (Hh) signaling controls embryonic development and adult tissue homeostasis through the Gli family of transcription factors. In vertebrates, Hh signal transduction depends on the primary cilium where Gli is thought to be activated at the ciliary tip, but the underlying mechanism has remained poorly understood. Here we provide evidence that two Unc-51-like kinase (Ulk) family members Stk36 and Ulk4 regulate Gli2 ciliary tip localization and activation through phosphorylation and SUMOylation-mediated condensation in response to Shh. We find that Stk36-mediated phosphorylation of Ulk4 promotes its SUMOylation in response to Shh, and the subsequent interaction between SUMO and a SUMO-Interacting-Motif (SIM) in the C-terminal region of Ulk4 drives Ulk4 self-assembly to form biomolecular condensates that also recruit Stk36 and Gli2. SUMOylation or SIM-deficient Ulk4 failed to accumulate at ciliary tip to activate Gli2 whereas phospho-mimetic mutation of Ulk4 sufficed to drive Ulk4/Stk36/Gli2 condensation at ciliary tip, leading to constitutive Shh pathway activation in a manner dependent on Ulk4 SUMOylation. Taken together, our results suggest that phosphorylation-dependent SUMOylation of Ulk4 promotes kinase-substrate condensation at ciliary tip to transduce the Hh signal.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuhong Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Udagawa O, Kato-Udagawa A, Hirano S. Behavior of Assembled Promyelocytic Leukemia Nuclear Bodies upon Asymmetric Division in Mouse Oocytes. Int J Mol Sci 2024; 25:8656. [PMID: 39201340 PMCID: PMC11354524 DOI: 10.3390/ijms25168656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Promyelocytic leukemia (PML) nuclear bodies (PML-NBs) are core-shell-type membrane-less organelles typically found in the nucleus of mammalian somatic cells but are absent in mouse oocytes. Here, we deliberately induced the assembly of PML-NBs by injecting mRNA encoding human PML protein (hPML VI -sfGFP) into oocytes and investigated their impact on fertilization in which oocyte/embryos undergo multiple types of stresses. Following nuclear membrane breakdown, preassembled hPML VI -sfGFP mRNA-derived PML-NBs (hmdPML-NBs) persisted in the cytoplasm of oocytes, forming less-soluble debris, particularly under stress. Parthenogenetic embryos that successfully formed pronuclei were capable of removing preassembled hmdPML-NBs from the cytoplasm while forming new hmdPML-NBs in the pronucleus. These observations highlight the beneficial aspect of the PML-NB-free nucleoplasmic environment and suggest that the ability to eliminate unnecessary materials in the cytoplasm of metaphase oocytes serves as a potential indicator of the oocyte quality.
Collapse
Affiliation(s)
- Osamu Udagawa
- Environmental Risk and Health Research Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | | | | |
Collapse
|
7
|
Orsini F, Bosica M, Martucci A, De Paola M, Comolli D, Pascente R, Forloni G, Fraser PE, Arancio O, Fioriti L. SARS-CoV-2 Nucleocapsid Protein Induces Tau Pathological Changes That Can Be Counteracted by SUMO2. Int J Mol Sci 2024; 25:7169. [PMID: 39000276 PMCID: PMC11241313 DOI: 10.3390/ijms25137169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Neurologic manifestations are an immediate consequence of SARS-CoV-2 infection, the etiologic agent of COVID-19, which, however, may also trigger long-term neurological effects. Notably, COVID-19 patients with neurological symptoms show elevated levels of biomarkers associated with brain injury, including Tau proteins linked to Alzheimer's pathology. Studies in brain organoids revealed that SARS-CoV-2 alters the phosphorylation and distribution of Tau in infected neurons, but the mechanisms are currently unknown. We hypothesize that these pathological changes are due to the recruitment of Tau into stress granules (SGs) operated by the nucleocapsid protein (NCAP) of SARS-CoV-2. To test this hypothesis, we investigated whether NCAP interacts with Tau and localizes to SGs in hippocampal neurons in vitro and in vivo. Mechanistically, we tested whether SUMOylation, a posttranslational modification of NCAP and Tau, modulates their distribution in SGs and their pathological interaction. We found that NCAP and Tau colocalize and physically interact. We also found that NCAP induces hyperphosphorylation of Tau and causes cognitive impairment in mice infected with NCAP in their hippocampus. Finally, we found that SUMOylation modulates NCAP SG formation in vitro and cognitive performance in infected mice. Our data demonstrate that NCAP induces Tau pathological changes both in vitro and in vivo. Moreover, we demonstrate that SUMO2 ameliorates NCAP-induced Tau pathology, highlighting the importance of the SUMOylation pathway as a target of intervention against neurotoxic insults, such as Tau oligomers and viral infection.
Collapse
Affiliation(s)
- Franca Orsini
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, MI, Italy; (F.O.); (M.B.); (A.M.); (M.D.P.); (D.C.); (R.P.); (G.F.)
| | - Marco Bosica
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, MI, Italy; (F.O.); (M.B.); (A.M.); (M.D.P.); (D.C.); (R.P.); (G.F.)
| | - Annacarla Martucci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, MI, Italy; (F.O.); (M.B.); (A.M.); (M.D.P.); (D.C.); (R.P.); (G.F.)
| | - Massimiliano De Paola
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, MI, Italy; (F.O.); (M.B.); (A.M.); (M.D.P.); (D.C.); (R.P.); (G.F.)
| | - Davide Comolli
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, MI, Italy; (F.O.); (M.B.); (A.M.); (M.D.P.); (D.C.); (R.P.); (G.F.)
| | - Rosaria Pascente
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, MI, Italy; (F.O.); (M.B.); (A.M.); (M.D.P.); (D.C.); (R.P.); (G.F.)
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, MI, Italy; (F.O.); (M.B.); (A.M.); (M.D.P.); (D.C.); (R.P.); (G.F.)
| | - Paul E. Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 2S8, Canada;
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Taub Institute for Research of Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA;
| | - Luana Fioriti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, MI, Italy; (F.O.); (M.B.); (A.M.); (M.D.P.); (D.C.); (R.P.); (G.F.)
- Department of Pathology and Cell Biology, Taub Institute for Research of Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA;
| |
Collapse
|
8
|
Promtang S, Sanguanphun T, Chalorak P, Pe LS, Niamnont N, Sobhon P, Meemon K. 2-Butoxytetrahydrofuran, Isolated from Holothuria scabra, Attenuates Aggregative and Oxidative Properties of α-Synuclein and Alleviates Its Toxicity in a Transgenic Caenorhabditis elegans Model of Parkinson's Disease. ACS Chem Neurosci 2024; 15:2182-2197. [PMID: 38726817 PMCID: PMC11157484 DOI: 10.1021/acschemneuro.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
Aggregative α-synuclein and incurring oxidative stress are pivotal cascading events, leading to dopaminergic (DAergic) neuronal loss and contributing to clinical manifestations of Parkinson's disease (PD). Our previous study demonstrated that 2-butoxytetrahydrofuran (2-BTHF), isolated from Holothuria scabra (H. scabra), could inhibit amyloid-β aggregation and its ensuing toxicity, which leads to Alzheimer's disease. In the present study, we found that 2-BTHF also attenuated the aggregative and oxidative activities of α-synuclein and lessened its toxicity in a transgenic Caenorhabditis elegans (C. elegans) PD model. Such worms treated with 100 μM of 2-BTHF showed substantial reductions in α-synuclein accumulation and DAergic neurodegeneration. Mechanistically, 2-BTHF, at this concentration, significantly decreased aggregation of monomeric α-synuclein and restored locomotion and dopamine-dependent behaviors. Molecular docking exhibited potential bindings of 2-BTHF to HSF-1 and DAF-16 transcription factors. Additionally, 2-BTHF significantly increased the mRNA transcripts of genes encoding proteins involved in proteostasis, including the molecular chaperones hsp-16.2 and hsp-16.49, the ubiquitination/SUMOylation-related ubc-9 gene, and the autophagy-related genes atg-7 and lgg-1. Transcriptomic profiling revealed an additional mechanism of 2-BTHF in α-synuclein-expressing worms, which showed upregulation of PPAR signaling cascades that mediated fatty acid metabolism. 2-BTHF significantly restored lipid deposition, upregulated the fat-7 gene, and enhanced gcs-1-mediated glutathione synthesis in the C. elegans PD model. Taken together, this study demonstrated that 2-BTHF could abrogate aggregative and oxidative properties of α-synuclein and attenuate its toxicity, thus providing a possible therapeutic application for the treatment of α-synuclein-induced PD.
Collapse
Affiliation(s)
- Sukrit Promtang
- Molecular
Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Tanatcha Sanguanphun
- Department
of Anatomy, Faculty of Science, Mahidol
University, Ratchathewi, Bangkok 10400, Thailand
| | - Pawanrat Chalorak
- Department
of Radiological Technology and Medical Physics, Faculty of Allied
Health Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Laurence S. Pe
- Research
Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Nakorn Niamnont
- Department
of Chemistry, Faculty of Science, King Mongkut’s
University of Technology Thonburi, Bang Mod, Bangkok 10140, Thailand
| | - Prasert Sobhon
- Department
of Anatomy, Faculty of Science, Mahidol
University, Ratchathewi, Bangkok 10400, Thailand
| | - Krai Meemon
- Department
of Anatomy, Faculty of Science, Mahidol
University, Ratchathewi, Bangkok 10400, Thailand
- Center for
Neuroscience, Faculty of Science, Mahidol
University, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
9
|
Kumar A, Mathew V, Stirling PC. Dynamics of DNA damage-induced nuclear inclusions are regulated by SUMOylation of Btn2. Nat Commun 2024; 15:3215. [PMID: 38615096 PMCID: PMC11016081 DOI: 10.1038/s41467-024-47615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/05/2024] [Indexed: 04/15/2024] Open
Abstract
Spatial compartmentalization is a key facet of protein quality control that serves to store disassembled or non-native proteins until triage to the refolding or degradation machinery can occur in a regulated manner. Yeast cells sequester nuclear proteins at intranuclear quality control bodies (INQ) in response to various stresses, although the regulation of this process remains poorly understood. Here we reveal the SUMO modification of the small heat shock protein Btn2 under DNA damage and place Btn2 SUMOylation in a pathway promoting protein clearance from INQ structures. Along with other chaperones, and degradation machinery, Btn2-SUMO promotes INQ clearance from cells recovering from genotoxic stress. These data link small heat shock protein post-translational modification to the regulation of protein sequestration in the yeast nucleus.
Collapse
Affiliation(s)
- Arun Kumar
- Terry Fox Laboratory, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Veena Mathew
- Terry Fox Laboratory, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z1L3, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
| |
Collapse
|
10
|
Bence M, Jankovics F, Kristó I, Gyetvai Á, Vértessy BG, Erdélyi M. Direct interaction of Su(var)2-10 via the SIM-binding site of the Piwi protein is required for transposon silencing in Drosophila melanogaster. FEBS J 2024; 291:1759-1779. [PMID: 38308815 DOI: 10.1111/febs.17073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/30/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Nuclear Piwi/Piwi-interacting RNA complexes mediate co-transcriptional silencing of transposable elements by inducing local heterochromatin formation. In Drosophila, sumoylation plays an essential role in the assembly of the silencing complex; however, the molecular mechanism by which the sumoylation machinery is recruited to the transposon loci is poorly understood. Here, we show that the Drosophila E3 SUMO-ligase Su(var)2-10 directly binds to the Piwi protein. This interaction is mediated by the SUMO-interacting motif-like (SIM-like) structure in the C-terminal domain of Su(var)2-10. We demonstrated that the SIM-like structure binds to a special region found in the MID domain of the Piwi protein, the structure of which is highly similar to the SIM-binding pocket of SUMO proteins. Abrogation of the Su(var)2-10-binding surface of the Piwi protein resulted in transposon derepression in the ovary of adult flies. Based on our results, we propose a model in which the Piwi protein initiates local sumoylation in the silencing complex by recruiting Su(var)2-10 to the transposon loci.
Collapse
Affiliation(s)
- Melinda Bence
- Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Ferenc Jankovics
- Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
- Department of Medical Biology, University of Szeged, Hungary
| | - Ildikó Kristó
- Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Ákos Gyetvai
- Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Beáta G Vértessy
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Hungary
- Institute of Enzymology, HUN-REN Research Centre of Natural Sciences, Budapest, Hungary
| | - Miklós Erdélyi
- Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| |
Collapse
|
11
|
Chato-Astrain I, Pronot M, Coppola T, Martin S. Molecular Organization and Regulation of the Mammalian Synapse by the Post-Translational Modification SUMOylation. Cells 2024; 13:420. [PMID: 38474384 PMCID: PMC10930594 DOI: 10.3390/cells13050420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Neurotransmission occurs within highly specialized compartments forming the active synapse where the complex organization and dynamics of the interactions are tightly orchestrated both in time and space. Post-translational modifications (PTMs) are central to these spatiotemporal regulations to ensure an efficient synaptic transmission. SUMOylation is a dynamic PTM that modulates the interactions between proteins and consequently regulates the conformation, the distribution and the trafficking of the SUMO-target proteins. SUMOylation plays a crucial role in synapse formation and stabilization, as well as in the regulation of synaptic transmission and plasticity. In this review, we summarize the molecular consequences of this protein modification in the structural organization and function of the mammalian synapse. We also outline novel activity-dependent regulation and consequences of the SUMO process and explore how this protein modification can functionally participate in the compartmentalization of both pre- and post-synaptic sites.
Collapse
Affiliation(s)
- Isabel Chato-Astrain
- Université Côte d’Azur, CNRS, Inserm, IPMC, Sophia Antipolis, F-06560 Valbonne, France; (I.C.-A.); (T.C.)
| | - Marie Pronot
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK;
| | - Thierry Coppola
- Université Côte d’Azur, CNRS, Inserm, IPMC, Sophia Antipolis, F-06560 Valbonne, France; (I.C.-A.); (T.C.)
| | - Stéphane Martin
- Université Côte d’Azur, CNRS, Inserm, IPMC, Sophia Antipolis, F-06560 Valbonne, France; (I.C.-A.); (T.C.)
| |
Collapse
|
12
|
Gorsheneva NA, Sopova JV, Azarov VV, Grizel AV, Rubel AA. Biomolecular Condensates: Structure, Functions, Methods of Research. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S205-S223. [PMID: 38621751 DOI: 10.1134/s0006297924140116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 04/17/2024]
Abstract
The term "biomolecular condensates" is used to describe membraneless compartments in eukaryotic cells, accumulating proteins and nucleic acids. Biomolecular condensates are formed as a result of liquid-liquid phase separation (LLPS). Often, they demonstrate properties of liquid-like droplets or gel-like aggregates; however, some of them may appear to have a more complex structure and high-order organization. Membraneless microcompartments are involved in diverse processes both in cytoplasm and in nucleus, among them ribosome biogenesis, regulation of gene expression, cell signaling, and stress response. Condensates properties and structure could be highly dynamic and are affected by various internal and external factors, e.g., concentration and interactions of components, solution temperature, pH, osmolarity, etc. In this review, we discuss variety of biomolecular condensates and their functions in live cells, describe their structure variants, highlight domain and primary sequence organization of the constituent proteins and nucleic acids. Finally, we describe current advances in methods that characterize structure, properties, morphology, and dynamics of biomolecular condensates in vitro and in vivo.
Collapse
Affiliation(s)
| | - Julia V Sopova
- St. Petersburg State University, St. Petersburg, 199034, Russia.
| | | | - Anastasia V Grizel
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | |
Collapse
|
13
|
Silonov SA, Smirnov EY, Kuznetsova IM, Turoverov KK, Fonin AV. PML Body Biogenesis: A Delicate Balance of Interactions. Int J Mol Sci 2023; 24:16702. [PMID: 38069029 PMCID: PMC10705990 DOI: 10.3390/ijms242316702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
PML bodies are subnuclear protein complexes that play a crucial role in various physiological and pathological cellular processes. One of the general structural proteins of PML bodies is a member of the tripartite motif (TRIM) family-promyelocytic leukemia protein (PML). It is known that PML interacts with over a hundred partners, and the protein itself is represented by several major isoforms, differing in their variable and disordered C-terminal end due to alternative splicing. Despite nearly 30 years of research, the mechanisms underlying PML body formation and the role of PML proteins in this process remain largely unclear. In this review, we examine the literature and highlight recent progress in this field, with a particular focus on understanding the role of individual domains of the PML protein, its post-translational modifications, and polyvalent nonspecific interactions in the formation of PML bodies. Additionally, based on the available literature, we propose a new hypothetical model of PML body formation.
Collapse
Affiliation(s)
- Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (E.Y.S.); (I.M.K.); (K.K.T.)
| | | | | | | | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (E.Y.S.); (I.M.K.); (K.K.T.)
| |
Collapse
|
14
|
Galagedera SKK, Dao TP, Enos SE, Chaudhuri A, Schmit JD, Castañeda CA. Polyubiquitin ligand-induced phase transitions are optimized by spacing between ubiquitin units. Proc Natl Acad Sci U S A 2023; 120:e2306638120. [PMID: 37824531 PMCID: PMC10589717 DOI: 10.1073/pnas.2306638120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Biomolecular condensates form via multivalent interactions among key macromolecules and are regulated through ligand binding and/or posttranslational modifications. One such modification is ubiquitination, the covalent addition of ubiquitin (Ub) or polyubiquitin chains to target macromolecules. Specific interactions between polyubiquitin chains and partner proteins, including hHR23B, NEMO, and UBQLN2, regulate condensate assembly or disassembly. Here, we used a library of designed polyubiquitin hubs and UBQLN2 as model systems for determining the driving forces of ligand-mediated phase transitions. Perturbations to either the UBQLN2-binding surface of Ub or the spacing between Ub units reduce the ability of hubs to modulate UBQLN2 phase behavior. By developing an analytical model based on polyphasic linkage principles that accurately described the effects of different hubs on UBQLN2 phase separation, we determined that introduction of Ub to UBQLN2 condensates incurs a significant inclusion energetic penalty. This penalty antagonizes the ability of polyUb hubs to scaffold multiple UBQLN2 molecules and cooperatively amplify phase separation. The extent to which polyubiquitin hubs promote UBQLN2 phase separation is encoded in the spacings between Ub units. This spacing is modulated by chains of different linkages and designed chains of different architectures, thus illustrating how the ubiquitin code regulates functionality via the emergent properties of the condensate. The spacing in naturally occurring linear polyubiquitin chains is already optimized to promote phase separation with UBQLN2. We expect our findings to extend to other condensates, emphasizing the importance of ligand properties, including concentration, valency, affinity, and spacing between binding sites in studies and designs of condensates.
Collapse
Affiliation(s)
- Sarasi K. K. Galagedera
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Thuy P. Dao
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Suzanne E. Enos
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Antara Chaudhuri
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Jeremy D. Schmit
- Department of Physics, Kansas State University, Manhattan, KS66506
| | - Carlos A. Castañeda
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY13244
- BioInspired Institute, Syracuse University, Syracuse, NY13244
| |
Collapse
|
15
|
Arora S, Roy DS, Maiti S, Ainavarapu SRK. Phase Separation and Aggregation of a Globular Folded Protein Small Ubiquitin-like Modifier 1 (SUMO1). J Phys Chem Lett 2023; 14:9060-9068. [PMID: 37782899 DOI: 10.1021/acs.jpclett.3c02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Liquid-liquid phase separation (LLPS) plays a crucial role in cellular organization, primarily driven by intrinsically disordered proteins (IDPs) leading to the formation of biomolecular condensates. A folded protein SUMO that post-translationally modifies cellular proteins has recently emerged as a regulator of LLPS. Given its compact structure and limited flexibility, the precise role of SUMO in condensate formation remains to be investigated. Here, we show the rapid phase separation of SUMO1 into micrometer-sized liquid-like condensates in inert crowders under physiological conditions. Subsequent time-dependent conformational changes and aggregation are probed by label-free methods (tryptophan fluorescence and Raman spectroscopy). Remarkably, experiments on a SUMO1 variant lacking the N-terminal disordered region further corroborate the role of its structured part in phase transitions. Our findings highlight the potential of folded proteins to engage in LLPS and emphasize further investigation into the influence of the SUMO tag on IDPs associated with membrane-less assemblies in cells.
Collapse
Affiliation(s)
- Simran Arora
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Debsankar Saha Roy
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
16
|
Claessens LA, Verlaan-de Vries M, de Graaf IJ, Vertegaal ACO. SENP6 regulates localization and nuclear condensation of DNA damage response proteins by group deSUMOylation. Nat Commun 2023; 14:5893. [PMID: 37735495 PMCID: PMC10514054 DOI: 10.1038/s41467-023-41623-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
The SUMO protease SENP6 maintains genomic stability, but mechanistic understanding of this process remains limited. We find that SENP6 deconjugates SUMO2/3 polymers on a group of DNA damage response proteins, including BRCA1-BARD1, 53BP1, BLM and ERCC1-XPF. SENP6 maintains these proteins in a hypo-SUMOylated state under unstressed conditions and counteracts their polySUMOylation after hydroxyurea-induced stress. Co-depletion of RNF4 leads to a further increase in SUMOylation of BRCA1, BARD1 and BLM, suggesting that SENP6 antagonizes targeting of these proteins by RNF4. Functionally, depletion of SENP6 results in uncoordinated recruitment and persistence of SUMO2/3 at UVA laser and ionizing radiation induced DNA damage sites. Additionally, SUMO2/3 and DNA damage response proteins accumulate in nuclear bodies, in a PML-independent manner driven by multivalent SUMO-SIM interactions. These data illustrate coordinated regulation of SUMOylated DNA damage response proteins by SENP6, governing their timely localization at DNA damage sites and nuclear condensation state.
Collapse
Affiliation(s)
- Laura A Claessens
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Ilona J de Graaf
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|
17
|
Frion J, Meller A, Marbach G, Lévesque D, Roucou X, Boisvert FM. CRISPR/Cas9-mediated knockout of the ubiquitin variant UbKEKS reveals a role in regulating nucleolar structures and composition. Biol Open 2023; 12:bio059984. [PMID: 37670689 PMCID: PMC10537958 DOI: 10.1242/bio.059984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
Ubiquitination is a post-translational modification responsible for one of the most complex multilayered communication and regulation systems in the cell. Over the past decades, new ubiquitin variants and ubiquitin-like proteins arose to further enrich this mechanism. Recently discovered ubiquitin variant UbKEKS can specifically target several proteins and yet, functional consequences of this new modification remain unknown. Depletion of UbKEKS induces accumulation of lamin A in the nucleoli, highlighting the need for deeper investigations about protein composition and functions regulation of this highly dynamic and membrane-less compartment. Using data-independent acquisition mass spectrometry and microscopy, we show that despite not impacting protein stability, UbKEKS is required to maintain a normal nucleolar organization. The absence of UbKEKS increases nucleoli's size and accentuate their circularity while disrupting dense fibrillar component and fibrillar centre structures. Moreover, depletion of UbKEKS leads to distinct changes in nucleolar composition. Lack of UbKEKS favours nucleolar sequestration of known apoptotic regulators such as IFI16 or p14ARF, resulting in an increase of apoptosis observed by flow cytometry and real-time monitoring. Overall, these results identify the first cellular functions of the UbKEKS variant and lay the foundation stone to establish UbKEKS as a new universal layer of regulation in the ubiquitination system.
Collapse
Affiliation(s)
- Julie Frion
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Anna Meller
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Gwendoline Marbach
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| |
Collapse
|
18
|
Lemma RB, Ledsaak M, Fuglerud BM, Rodríguez-Castañeda F, Eskeland R, Gabrielsen OS. MYB regulates the SUMO protease SENP1 and its novel interaction partner UXT, modulating MYB target genes and the SUMO landscape. J Biol Chem 2023; 299:105062. [PMID: 37468105 PMCID: PMC10463205 DOI: 10.1016/j.jbc.2023.105062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
SUMOylation is a post-translational modification frequently found on nuclear proteins, including transcription factors (TFs) and coactivators. By controlling the activity of several TFs, SUMOylation may have far-reaching effects. MYB is an example of a developmental TF subjected to SUMO-mediated regulation, through both SUMO conjugation and SUMO binding. How SUMO affects MYB target genes is unknown. Here, we explored the global effect of reduced SUMOylation of MYB on its downstream gene programs. RNA-Seq in K562 cells after MYB knockdown and rescue with mutants having an altered SUMO status revealed a number of differentially regulated genes and distinct gene ontology term enrichments. Clearly, the SUMO status of MYB both quantitatively and qualitatively affects its regulome. The transcriptome data further revealed that MYB upregulates the SUMO protease SENP1, a key enzyme that removes SUMO conjugation from SUMOylated proteins. Given this role of SENP1 in the MYB regulome, we expanded the analysis, mapped interaction partners of SENP1, and identified UXT as a novel player affecting the SUMO system by acting as a repressor of SENP1. MYB inhibits the expression of UXT suggesting that MYB is able not only to control a specific gene program directly but also indirectly by affecting the SUMO landscape through SENP1 and UXT. These findings suggest an autoactivation loop whereby MYB, through enhancing SENP1 and reducing UXT, is itself being activated by a reduced level of repressive SUMOylation. We propose that overexpressed MYB, seen in multiple cancers, may drive this autoactivation loop and contribute to oncogenic activation of MYB.
Collapse
Affiliation(s)
- Roza Berhanu Lemma
- Department of Biosciences, University of Oslo, Oslo, Norway; Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway.
| | - Marit Ledsaak
- Department of Biosciences, University of Oslo, Oslo, Norway; Faculty of Medicine, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | - Ragnhild Eskeland
- Department of Biosciences, University of Oslo, Oslo, Norway; Faculty of Medicine, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Faculty of Medicine, Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
19
|
Safi A, Smagghe W, Gonçalves A, Wang Q, Xu K, Fernandez AI, Cappe B, Riquet FB, Mylle E, Eeckhout D, De Winne N, Van De Slijke E, Persyn F, Persiau G, Van Damme D, Geelen D, De Jaeger G, Beeckman T, Van Leene J, Vanneste S. Phase separation-based visualization of protein-protein interactions and kinase activities in plants. THE PLANT CELL 2023; 35:3280-3302. [PMID: 37378595 PMCID: PMC10473206 DOI: 10.1093/plcell/koad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/23/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
Protein activities depend heavily on protein complex formation and dynamic posttranslational modifications, such as phosphorylation. The dynamic nature of protein complex formation and posttranslational modifications is notoriously difficult to monitor in planta at cellular resolution, often requiring extensive optimization. Here, we generated and exploited the SYnthetic Multivalency in PLants (SYMPL)-vector set to assay protein-protein interactions (PPIs) (separation of phases-based protein interaction reporter) and kinase activities (separation of phases-based activity reporter of kinase) in planta, based on phase separation. This technology enabled easy detection of inducible, binary and ternary PPIs among cytoplasmic and nuclear proteins in plant cells via a robust image-based readout. Moreover, we applied the SYMPL toolbox to develop an in vivo reporter for SNF1-related kinase 1 activity, allowing us to visualize tissue-specific, dynamic SnRK1 activity in stable transgenic Arabidopsis (Arabidopsis thaliana) plants. The SYMPL cloning toolbox provides a means to explore PPIs, phosphorylation, and other posttranslational modifications with unprecedented ease and sensitivity.
Collapse
Affiliation(s)
- Alaeddine Safi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Wouter Smagghe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Amanda Gonçalves
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- VIB, Bioimaging Core, B-9052 Ghent, Belgium
| | - Qing Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ke Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ana Ibis Fernandez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Benjamin Cappe
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
| | - Franck B Riquet
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, 59000 Lille, France
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Freya Persyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
20
|
Ninova M, Holmes H, Lomenick B, Fejes Tóth K, Aravin AA. Pervasive SUMOylation of heterochromatin and piRNA pathway proteins. CELL GENOMICS 2023; 3:100329. [PMID: 37492097 PMCID: PMC10363806 DOI: 10.1016/j.xgen.2023.100329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 04/26/2023] [Indexed: 07/27/2023]
Abstract
Genome regulation involves complex protein interactions that are often mediated through post-translational modifications (PTMs). SUMOylation-modification by the small ubiquitin-like modifier (SUMO)-has been implicated in numerous essential processes in eukaryotes. In Drosophila, SUMO is required for viability and fertility, with its depletion from ovaries leading to heterochromatin loss and ectopic transposon and gene activation. Here, we developed a proteomics-based strategy to uncover the Drosophila ovarian "SUMOylome," which revealed that SUMOylation is widespread among proteins involved in heterochromatin regulation and different aspects of the Piwi-interacting small RNA (piRNA) pathway that represses transposons. Furthermore, we show that SUMOylation of several piRNA pathway proteins occurs in a Piwi-dependent manner. Together, these data highlight broad implications of protein SUMOylation in epigenetic regulation and indicate novel roles of this modification in the cellular defense against genomic parasites. Finally, this work provides a resource for the study of SUMOylation in other biological contexts in the Drosophila model.
Collapse
Affiliation(s)
- Maria Ninova
- Department of Biochemistry, University of California Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, USA
| | - Hannah Holmes
- Department of Biochemistry, University of California Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, USA
| | - Brett Lomenick
- Proteome Exploration Laboratory of the Beckman Institute, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Katalin Fejes Tóth
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Alexei A. Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
21
|
McGregor LA, Deckard CE, Smolen JA, Porter GM, Sczepanski JT. Thymine DNA glycosylase mediates chromatin phase separation in a DNA methylation-dependent manner. J Biol Chem 2023; 299:104907. [PMID: 37307918 PMCID: PMC10404674 DOI: 10.1016/j.jbc.2023.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/14/2023] Open
Abstract
Thymine DNA glycosylase (TDG) is an essential enzyme involved in numerous biological pathways, including DNA repair, DNA demethylation, and transcriptional activation. Despite these important functions, the mechanisms surrounding the actions and regulation of TDG are poorly understood. In this study, we demonstrate that TDG induces phase separation of DNA and nucleosome arrays under physiologically relevant conditions in vitro and show that the resulting chromatin droplets exhibited behaviors typical of phase-separated liquids, supporting a liquid-liquid phase separation model. We also provide evidence that TDG has the capacity to form phase-separated condensates in the cell nucleus. The ability of TDG to induce chromatin phase separation is dependent on its intrinsically disordered N- and C-terminal domains, which in isolation, promote the formation of chromatin-containing droplets having distinct physical properties, consistent with their unique mechanistic roles in the phase separation process. Interestingly, DNA methylation alters the phase behavior of the disordered domains of TDG and compromises formation of chromatin condensates by full-length TDG, indicating that DNA methylation regulates the assembly and coalescence of TDG-mediated condensates. Overall, our results shed new light on the formation and physical nature of TDG-mediated chromatin condensates, which have broad implications for the mechanism and regulation of TDG and its associated genomic processes.
Collapse
Affiliation(s)
- Lauren A McGregor
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Charles E Deckard
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Justin A Smolen
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Gabriela M Porter
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
22
|
Galagedera SKK, Dao TP, Enos SE, Chaudhuri A, Schmit JD, Castañeda CA. Decoding optimal ligand design for multicomponent condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532222. [PMID: 36993708 PMCID: PMC10054939 DOI: 10.1101/2023.03.13.532222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Biomolecular condensates form via multivalent interactions among key macromolecules and are regulated through ligand binding and/or post-translational modifications. One such modification is ubiquitination, the covalent addition of ubiquitin (Ub) or polyubiquitin chains to target macromolecules for various cellular processes. Specific interactions between polyubiquitin chains and partner proteins, including hHR23B, NEMO, and UBQLN2, regulate condensate assembly or disassembly. Here, we used a library of designed polyubiquitin hubs and UBQLN2 as model systems for determining the driving forces of ligand-mediated phase transitions. Perturbations to the UBQLN2-binding surface of Ub or deviations from the optimal spacing between Ub units reduce the ability of hubs to modulate UBQLN2 phase behavior. By developing an analytical model that accurately described the effects of different hubs on UBQLN2 phase diagrams, we determined that introduction of Ub to UBQLN2 condensates incurs a significant inclusion energetic penalty. This penalty antagonizes the ability of polyUb hubs to scaffold multiple UBQLN2 molecules and cooperatively amplify phase separation. Importantly, the extent to which polyubiquitin hubs can promote UBQLN2 phase separation are encoded in the spacings between Ub units as found for naturally-occurring chains of different linkages and designed chains of different architectures, thus illustrating how the ubiquitin code regulates functionality via the emergent properties of the condensate. We expect our findings to extend to other condensates necessitating the consideration of ligand properties, including concentration, valency, affinity, and spacing between binding sites in studies and designs of condensates.
Collapse
Affiliation(s)
| | - Thuy P. Dao
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Suzanne E. Enos
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Antara Chaudhuri
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Jeremy D. Schmit
- Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Carlos A. Castañeda
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, USA
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
23
|
Acuña ML, García-Morin A, Orozco-Sepúlveda R, Ontiveros C, Flores A, Diaz AV, Gutiérrez-Zubiate I, Patil AR, Alvarado LA, Roy S, Russell WK, Rosas-Acosta G. Alternative splicing of the SUMO1/2/3 transcripts affects cellular SUMOylation and produces functionally distinct SUMO protein isoforms. Sci Rep 2023; 13:2309. [PMID: 36759644 PMCID: PMC9911741 DOI: 10.1038/s41598-023-29357-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Substantial increases in the conjugation of the main human SUMO paralogs, SUMO1, SUMO2, and SUMO3, are observed upon exposure to different cellular stressors, and such increases are considered important to facilitate cell survival to stress. Despite their critical cellular role, little is known about how the levels of the SUMO modifiers are regulated in the cell, particularly as it relates to the changes observed upon stress. Here we characterize the contribution of alternative splicing towards regulating the expression of the main human SUMO paralogs under normalcy and three different stress conditions, heat-shock, cold-shock, and Influenza A Virus infection. Our data reveal that the normally spliced transcript variants are the predominant mature mRNAs produced from the SUMO genes and that the transcript coding for SUMO2 is by far the most abundant of all. We also provide evidence that alternatively spliced transcripts coding for protein isoforms of the prototypical SUMO proteins, which we refer to as the SUMO alphas, are also produced, and that their abundance and nuclear export are affected by stress in a stress- and cell-specific manner. Additionally, we provide evidence that the SUMO alphas are actively synthesized in the cell as their coding mRNAs are found associated with translating ribosomes. Finally, we provide evidence that the SUMO alphas are functionally different from their prototypical counterparts, with SUMO1α and SUMO2α being non-conjugatable to protein targets, SUMO3α being conjugatable but targeting a seemingly different subset of protein from those targeted by SUMO3, and all three SUMO alphas displaying different cellular distributions from those of the prototypical SUMOs. Thus, alternative splicing appears to be an important contributor to the regulation of the expression of the SUMO proteins and the cellular functions of the SUMOylation system.
Collapse
Affiliation(s)
- Myriah L Acuña
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Andrea García-Morin
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Rebeca Orozco-Sepúlveda
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Carlos Ontiveros
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, 78229, USA
| | - Alejandra Flores
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Arely V Diaz
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | - Abhijeet R Patil
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Luis A Alvarado
- Biostatistics and Epidemiology Consulting Lab, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Sourav Roy
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Germán Rosas-Acosta
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
24
|
Ilic D, Magnussen HM, Tirard M. Stress - Regulation of SUMO conjugation and of other Ubiquitin-Like Modifiers. Semin Cell Dev Biol 2022; 132:38-50. [PMID: 34996712 DOI: 10.1016/j.semcdb.2021.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Stress is unavoidable and essential to cellular and organismal evolution and failure to adapt or restore homeostasis can lead to severe diseases or even death. At the cellular level, stress drives a plethora of molecular changes, of which variations in the profile of protein post-translational modifications plays a key role in mediating the adaptative response of the genome and proteome to stress. In this context, post-translational modification of proteins by ubiquitin-like modifiers, (Ubl), notably SUMO, is an essential stress response mechanism. In this review, aiming to draw universal concepts of the Ubls stress response, we will decipher how stress alters the expression level, activity, specificity and/or localization of the proteins involved in the conjugation pathways of the various type-I Ubls, and how this result in the modification of particular Ubl targets that will translate an adaptive physiological stress response and allow cells to restore homeostasis.
Collapse
Affiliation(s)
- Dragana Ilic
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg; Faculty of Biology, University of Freiburg, D-79104 Freiburg; Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen
| | - Helge M Magnussen
- MRC Protein Phosphorylation and Ubiquitination Unit, Sir James Black Center, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen.
| |
Collapse
|
25
|
Martín-Rufo R, de la Vega-Barranco G, Lecona E. Ubiquitin and SUMO as timers during DNA replication. Semin Cell Dev Biol 2022; 132:62-73. [PMID: 35210137 DOI: 10.1016/j.semcdb.2022.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
Abstract
Every time a cell copies its DNA the genetic material is exposed to the acquisition of mutations and genomic alterations that corrupt the information passed on to daughter cells. A tight temporal regulation of DNA replication is necessary to ensure the full copy of the DNA while preventing the appearance of genomic instability. Protein modification by ubiquitin and SUMO constitutes a very complex and versatile system that allows the coordinated control of protein stability, activity and interactome. In chromatin, their action is complemented by the AAA+ ATPase VCP/p97 that recognizes and removes ubiquitylated and SUMOylated factors from specific cellular compartments. The concerted action of the ubiquitin/SUMO system and VCP/p97 determines every step of DNA replication enforcing the ordered activation/inactivation, loading/unloading and stabilization/destabilization of replication factors. Here we analyze the mechanisms used by ubiquitin/SUMO and VCP/p97 to establish molecular timers throughout DNA replication and their relevance in maintaining genome stability. We propose that these PTMs are the main molecular watch of DNA replication from origin recognition to replisome disassembly.
Collapse
Affiliation(s)
- Rodrigo Martín-Rufo
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Guillermo de la Vega-Barranco
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Emilio Lecona
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain.
| |
Collapse
|
26
|
Lascorz J, Codina-Fabra J, Reverter D, Torres-Rosell J. SUMO-SIM interactions: From structure to biological functions. Semin Cell Dev Biol 2022; 132:193-202. [PMID: 34840078 DOI: 10.1016/j.semcdb.2021.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Post-translational modification by Small Ubiquitin-like Modifier (SUMO) proteins regulates numerous cellular processes. This modification involves the covalent and reversible attachment of SUMO to target proteins through an isopeptide bond, using a cascade of E1, E2 and E3 SUMOylation enzymes. Most functions of SUMO depend on the establishment of non-covalent protein-protein interactions between SUMOylated substrates and their binding partners. The vast majority of these interactions involve a conserved surface in the SUMO protein and a SUMO interacting motif (SIM), a short stretch of hydrophobic amino acids and an acidic region, in the interactor protein. Despite single SUMO-SIM interactions are relatively weak, they can have a huge impact at different levels, altering the activity, localization and stability of proteins, triggering the formation of macromolecular assemblies or inducing phase separation. Moreover, SUMO-SIM interactions are ubiquitous in most enzymes of the SUMO pathway, and play essential roles in SUMO conjugation and deconjugation. Here, we analyze the role of SUMO-SIM contacts in SUMO enzymes and targets and discuss how this humble interaction participates in SUMOylation reactions and mediates the outcome of this essential post-translational modification.
Collapse
Affiliation(s)
- Jara Lascorz
- Institut de Biotecnologia i de Biomedicina (IBB) and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Joan Codina-Fabra
- Departament de Ciencies Mediques Basiques, Institut de Recerca Biomedica de Lleida, Universitat de Lleida, 25198 Lleida, Spain
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina (IBB) and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jordi Torres-Rosell
- Departament de Ciencies Mediques Basiques, Institut de Recerca Biomedica de Lleida, Universitat de Lleida, 25198 Lleida, Spain.
| |
Collapse
|
27
|
Alemasova EE, Lavrik OI. Poly(ADP-ribose) in Condensates: The PARtnership of Phase Separation and Site-Specific Interactions. Int J Mol Sci 2022; 23:14075. [PMID: 36430551 PMCID: PMC9694962 DOI: 10.3390/ijms232214075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Biomolecular condensates are nonmembrane cellular compartments whose formation in many cases involves phase separation (PS). Despite much research interest in this mechanism of macromolecular self-organization, the concept of PS as applied to a live cell faces certain challenges. In this review, we discuss a basic model of PS and the role of site-specific interactions and percolation in cellular PS-related events. Using a multivalent poly(ADP-ribose) molecule as an example, which has high PS-driving potential due to its structural features, we consider how site-specific interactions and network formation are involved in the formation of phase-separated cellular condensates.
Collapse
Affiliation(s)
- Elizaveta E. Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
28
|
Liebl MC, Hofmann TG. Regulating the p53 Tumor Suppressor Network at PML Biomolecular Condensates. Cancers (Basel) 2022; 14:4549. [PMID: 36230470 PMCID: PMC9558958 DOI: 10.3390/cancers14194549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
By forming specific functional entities, nuclear biomolecular condensates play an important function in guiding biological processes. PML biomolecular condensates, also known as PML nuclear bodies (NBs), are macro-molecular sub-nuclear organelles involved in central biological processes, including anti-viral response and cell fate control upon genotoxic stress. PML condensate formation is stimulated upon cellular stress, and relies on protein-protein interactions establishing a PML protein meshwork capable of recruiting the tumor suppressor p53, along with numerous modifiers of p53, thus balancing p53 posttranslational modifications and activity. This stress-regulated process appears to be controlled by liquid-liquid phase separation (LLPS), which may facilitate regulated protein-unmixing of p53 and its regulators into PML nuclear condensates. In this review, we summarize and discuss the molecular mechanisms underlying PML nuclear condensate formation, and how these impact the biological function of p53 in driving the cell death and senescence responses. In addition, by using an in silico approach, we identify 299 proteins which share PML and p53 as binding partners, thus representing novel candidate proteins controlling p53 function and cell fate decision-making at the level of PML nuclear biocondensates.
Collapse
Affiliation(s)
| | - Thomas G. Hofmann
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
29
|
Crosstalk between Biomolecular Condensates and Proteostasis. Cells 2022; 11:cells11152415. [PMID: 35954258 PMCID: PMC9368065 DOI: 10.3390/cells11152415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/23/2022] Open
Abstract
Proper homeostasis of the proteome, referred to as proteostasis, is maintained by chaperone-dependent refolding of misfolded proteins and by protein degradation via the ubiquitin-proteasome system and the autophagic machinery. This review will discuss a crosstalk between biomolecular condensates and proteostasis, whereby the crowding of proteostasis factors into macromolecular assemblies is often established by phase separation of membraneless biomolecular condensates. Specifically, ubiquitin and other posttranslational modifications come into play as agents of phase separation, essential for the formation of condensates and for ubiquitin-proteasome system activity. Furthermore, an intriguing connection associates malfunction of the same pathways to the accumulation of misfolded and ubiquitinated proteins in aberrant condensates, the formation of protein aggregates, and finally, to the pathogenesis of neurodegenerative diseases. The crosstalk between biomolecular condensates and proteostasis is an emerging theme in cellular and disease biology and further studies will focus on delineating specific molecular pathways involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases.
Collapse
|
30
|
Lussier-Price M, Wahba HM, Mascle XH, Cappadocia L, Bourdeau V, Gagnon C, Igelmann S, Sakaguchi K, Ferbeyre G, Omichinski J. Zinc controls PML nuclear body formation through regulation of a paralog specific auto-inhibition in SUMO1. Nucleic Acids Res 2022; 50:8331-8348. [PMID: 35871297 PMCID: PMC9371903 DOI: 10.1093/nar/gkac620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
SUMO proteins are important regulators of many key cellular functions in part through their ability to form interactions with other proteins containing SUMO interacting motifs (SIMs). One characteristic feature of all SUMO proteins is the presence of a highly divergent intrinsically disordered region at their N-terminus. In this study, we examine the role of this N-terminal region of SUMO proteins in SUMO–SIM interactions required for the formation of nuclear bodies by the promyelocytic leukemia (PML) protein (PML-NBs). We demonstrate that the N-terminal region of SUMO1 functions in a paralog specific manner as an auto-inhibition domain by blocking its binding to the phosphorylated SIMs of PML and Daxx. Interestingly, we find that this auto-inhibition in SUMO1 is relieved by zinc, and structurally show that zinc stabilizes the complex between SUMO1 and a phospho-mimetic form of the SIM of PML. In addition, we demonstrate that increasing cellular zinc levels enhances PML-NB formation in senescent cells. Taken together, these results provide important insights into a paralog specific function of SUMO1, and suggest that zinc levels could play a crucial role in regulating SUMO1-SIM interactions required for PML-NB formation and function.
Collapse
Affiliation(s)
- Mathieu Lussier-Price
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Haytham M Wahba
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
- Department of Biochemistry, Beni-Suef University , Beni-Suef, Egypt
| | - Xavier H Mascle
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Laurent Cappadocia
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Veronique Bourdeau
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Christina Gagnon
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Sebastian Igelmann
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Kazuyasu Sakaguchi
- Department of Chemistry, Faculty of Science, Hokkaido University , Sapporo, Japan
| | - Gerardo Ferbeyre
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - James G Omichinski
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| |
Collapse
|
31
|
Mann G, Sadhu P, Brik A. Multiplexed Delivery of Synthetic (Un)Conjugatable Ubiquitin and SUMO2 Enables Simultaneous Monitoring of Their Localization and Function in Live Cells. Chembiochem 2022; 23:e202200122. [PMID: 35235714 PMCID: PMC9401080 DOI: 10.1002/cbic.202200122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 11/17/2022]
Abstract
Ubiquitin (Ub) and its related small Ub like modifier (SUMO) are among the most influential protein post-translational modifications in eukaryotes. Unfortunately, visualizing these modifications in live cells is a challenging task. Chemical protein synthesis offers great opportunities in studying and further understanding Ub and SUMO biology. Nevertheless, the low cell permeability of proteins limits these studies mainly for in vitro applications. Here, we introduce a multiplexed protein cell delivery approach, termed MBL (multiplexed bead loading), for simultaneous loading of up to four differentially labeled proteins with organic fluorophores. We applied MBL to visualize ubiquitination and SUMOylation events in live and untransfected cells without fluorescent protein tags or perturbation to their endogenous levels. Our study reveals unprecedented involvements of Ub and SUMO2 in lysosomes depending on conjugation states. We envision that this approach will improve our understanding of dynamic cellular processes such as formation and disassembly of membraneless organelles.
Collapse
Affiliation(s)
- Guy Mann
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| | - Pradeep Sadhu
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| | - Ashraf Brik
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| |
Collapse
|
32
|
A SUMO4 initiator codon variant in amyotrophic lateral sclerosis reduces SUMO4 expression and alters stress granule dynamics. J Neurol 2022; 269:4863-4871. [PMID: 35503374 PMCID: PMC9363285 DOI: 10.1007/s00415-022-11126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 10/24/2022]
Abstract
BACKGROUND Recent evidence points toward a role of the small ubiquitin-like modifier (SUMO) system, including SUMO4, in protecting from stress insults and neurodegeneration, such as the progressive motor neuron disease amyotrophic lateral sclerosis (ALS), e.g., by regulating stress granule (SG) dynamics. Here, we investigated whether SUMO4 variants play a role in ALS pathogenesis. METHODS Whole-exome or targeted SUMO4 sequencing was done in 222 unrelated European ALS patients. The consequences of the identified initiator codon variant were analyzed at the mRNA, protein and cellular level. SUMO4 expression was quantified in human tissues. All patients were subjected to clinical, electrophysiological, and neuroradiological characterization. RESULTS A rare heterozygous SUMO4 variant, i.e., SUMO4:c.2T>C p.Met1?, was detected in four of 222 (1.8%) ALS patients, significantly more frequently than in two control cohorts (0.3% each). SUMO4 mRNA and protein expression was diminished in whole blood or fibroblasts of a SUMO4 variant carrier versus controls. Pertinent stress factors, i.e., head trauma or cancer (treated by radiochemotherapy), were significantly more frequent in SUMO4 variant carrier versus non-carrier ALS patients. The mean number of SGs per cell was significantly higher in fibroblasts of a SUMO4 variant carrier compared to controls at baseline, upon oxidative stress, and after recovery, and SUMOylation of ALS-associated valosin-containing protein by SUMO4 was decreased. SUMO4 mRNA expression was highest in brain of all human tissues analyzed. CONCLUSIONS Our results are consistent with SUMO4 haploinsufficiency as a contributor to ALS pathogenesis impacting SG dynamics and possibly acting in conjunction with environmental oxidative stress-related factors.
Collapse
|
33
|
Sumoylation in Physiology, Pathology and Therapy. Cells 2022; 11:cells11050814. [PMID: 35269436 PMCID: PMC8909597 DOI: 10.3390/cells11050814] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Sumoylation is an essential post-translational modification that has evolved to regulate intricate networks within emerging complexities of eukaryotic cells. Thousands of target substrates are modified by SUMO peptides, leading to changes in protein function, stability or localization, often by modulating interactions. At the cellular level, sumoylation functions as a key regulator of transcription, nuclear integrity, proliferation, senescence, lineage commitment and stemness. A growing number of prokaryotic and viral proteins are also emerging as prime sumoylation targets, highlighting the role of this modification during infection and in immune processes. Sumoylation also oversees epigenetic processes. Accordingly, at the physiological level, it acts as a crucial regulator of development. Yet, perhaps the most prominent function of sumoylation, from mammals to plants, is its role in orchestrating organismal responses to environmental stresses ranging from hypoxia to nutrient stress. Consequently, a growing list of pathological conditions, including cancer and neurodegeneration, have now been unambiguously associated with either aberrant sumoylation of specific proteins and/or dysregulated global cellular sumoylation. Therapeutic enforcement of sumoylation can also accomplish remarkable clinical responses in various diseases, notably acute promyelocytic leukemia (APL). In this review, we will discuss how this modification is emerging as a novel drug target, highlighting from the perspective of translational medicine, its potential and limitations.
Collapse
|
34
|
Exploring the multifunctionality of SR proteins. Biochem Soc Trans 2021; 50:187-198. [PMID: 34940860 PMCID: PMC9022966 DOI: 10.1042/bst20210325] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022]
Abstract
Members of the arginine–serine-rich protein family (SR proteins) are multifunctional RNA-binding proteins that have emerged as key determinants for mRNP formation, identity and fate. They bind to pre-mRNAs early during transcription in the nucleus and accompany bound transcripts until they are translated or degraded in the cytoplasm. SR proteins are mostly known for their essential roles in constitutive splicing and as regulators of alternative splicing. However, many additional activities of individual SR proteins, beyond splicing, have been reported in recent years. We will summarize the different functions of SR proteins and discuss how multifunctionality can be achieved. We will also highlight the difficulties of studying highly versatile SR proteins and propose approaches to disentangle their activities, which is transferrable to other multifunctional RBPs.
Collapse
|
35
|
Yau TY, Sander W, Eidson C, Courey AJ. SUMO Interacting Motifs: Structure and Function. Cells 2021; 10:cells10112825. [PMID: 34831049 PMCID: PMC8616421 DOI: 10.3390/cells10112825] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Small ubiquitin-related modifier (SUMO) is a member of the ubiquitin-related protein family. SUMO modulates protein function through covalent conjugation to lysine residues in a large number of proteins. Once covalently conjugated to a protein, SUMO often regulates that protein’s function by recruiting other cellular proteins. Recruitment frequently involves a non-covalent interaction between SUMO and a SUMO-interacting motif (SIM) in the interacting protein. SIMs generally consist of a four-residue-long hydrophobic stretch of amino acids with aliphatic non-polar side chains flanked on one side by negatively charged amino acid residues. The SIM assumes an extended β-strand-like conformation and binds to a conserved hydrophobic groove in SUMO. In addition to hydrophobic interactions between the SIM non-polar core and hydrophobic residues in the groove, the negatively charged residues in the SIM make favorable electrostatic contacts with positively charged residues in and around the groove. The SIM/SUMO interaction can be regulated by the phosphorylation of residues adjacent to the SIM hydrophobic core, which provide additional negative charges for favorable electrostatic interaction with SUMO. The SUMO interactome consists of hundreds or perhaps thousands of SIM-containing proteins, but we do not fully understand how each SUMOylated protein selects the set of SIM-containing proteins appropriate to its function. SIM/SUMO interactions have critical functions in a large number of essential cellular processes including the formation of membraneless organelles by liquid–liquid phase separation, epigenetic regulation of transcription through histone modification, DNA repair, and a variety of host–pathogen interactions.
Collapse
|
36
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|