1
|
Laosuntisuk K, Vennapusa A, Somayanda IM, Leman AR, Jagadish SK, Doherty CJ. A normalization method that controls for total RNA abundance affects the identification of differentially expressed genes, revealing bias toward morning-expressed responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1241-1257. [PMID: 38289828 DOI: 10.1111/tpj.16654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
RNA-Sequencing is widely used to investigate changes in gene expression at the transcription level in plants. Most plant RNA-Seq analysis pipelines base the normalization approaches on the assumption that total transcript levels do not vary between samples. However, this assumption has not been demonstrated. In fact, many common experimental treatments and genetic alterations affect transcription efficiency or RNA stability, resulting in unequal transcript abundance. The addition of synthetic RNA controls is a simple correction that controls for variation in total mRNA levels. However, adding spike-ins appropriately is challenging with complex plant tissue, and carefully considering how they are added is essential to their successful use. We demonstrate that adding external RNA spike-ins as a normalization control produces differences in RNA-Seq analysis compared to traditional normalization methods, even between two times of day in untreated plants. We illustrate the use of RNA spike-ins with 3' RNA-Seq and present a normalization pipeline that accounts for differences in total transcriptional levels. We evaluate the effect of normalization methods on identifying differentially expressed genes in the context of identifying the effect of the time of day on gene expression and response to chilling stress in sorghum.
Collapse
Affiliation(s)
- Kanjana Laosuntisuk
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Amaranatha Vennapusa
- Department of Agriculture and Natural Resources, Delaware State University, Dover, Delaware, USA
| | - Impa M Somayanda
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79410, USA
| | - Adam R Leman
- Department of Science and Technology, The Good Food Institute, Washington, District of Columbia, 20090, USA
| | - Sv Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79410, USA
- Department of Agronomy, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Colleen J Doherty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
Serrano A, Moret M, Fernández-Parras I, Bombarely A, Luque F, Navarro F. RNA Polymerases IV and V Are Involved in Olive Fruit Development. Genes (Basel) 2023; 15:1. [PMID: 38275583 PMCID: PMC10815247 DOI: 10.3390/genes15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Transcription is carried out in most eukaryotes by three multimeric complexes (RNA polymerases I, II and III). However, plants contain two additional RNA polymerases (IV and V), which have evolved from RNA polymerase II. RNA polymerases II, IV and V contain both common and specific subunits that may specialise some of their functions. In this study, we conducted a search for the genes that putatively code for the specific subunits of RNA polymerases IV and V, as well as those corresponding to RNA polymerase II in olive trees. Based on the homology with the genes of Arabidopsis thaliana, we identified 13 genes that putatively code for the specific subunits of polymerases IV and V, and 16 genes that code for the corresponding specific subunits of polymerase II in olives. The transcriptomic analysis by RNA-Seq revealed that the expression of the RNA polymerases IV and V genes was induced during the initial stages of fruit development. Given that RNA polymerases IV and V are involved in the transcription of long non-coding RNAs, we investigated their expression and observed relevant changes in the expression of this type of RNAs. Particularly, the expression of the intergenic and intronic long non-coding RNAs tended to increase in the early steps of fruit development, suggesting their potential role in this process. The positive correlation between the expression of RNA polymerases IV and V subunits and the expression of non-coding RNAs supports the hypothesis that RNA polymerases IV and V may play a role in fruit development through the synthesis of this type of RNAs.
Collapse
Affiliation(s)
- Alicia Serrano
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, 23071 Jaén, Spain; (A.S.); (M.M.); (I.F.-P.)
| | - Martín Moret
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, 23071 Jaén, Spain; (A.S.); (M.M.); (I.F.-P.)
| | - Isabel Fernández-Parras
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, 23071 Jaén, Spain; (A.S.); (M.M.); (I.F.-P.)
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC and Universitat Politécnica de Valencia, 46011 Valencia, Spain;
| | - Francisco Luque
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, 23071 Jaén, Spain; (A.S.); (M.M.); (I.F.-P.)
| | - Francisco Navarro
- Departamento de Biología Experimental, Universidad de Jaén, 23071 Jaén, Spain
| |
Collapse
|
3
|
Bullones A, Castro AJ, Lima-Cabello E, Fernandez-Pozo N, Bautista R, Alché JDD, Claros MG. Transcriptomic Insight into the Pollen Tube Growth of Olea europaea L. subsp. europaea Reveals Reprogramming and Pollen-Specific Genes Including New Transcription Factors. PLANTS (BASEL, SWITZERLAND) 2023; 12:2894. [PMID: 37631106 PMCID: PMC10459472 DOI: 10.3390/plants12162894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
The pollen tube is a key innovation of land plants that is essential for successful fertilisation. Its development and growth have been profusely studied in model organisms, but in spite of the economic impact of olive trees, little is known regarding the genome-wide events underlying pollen hydration and growth in this species. To fill this gap, triplicate mRNA samples at 0, 1, 3, and 6 h of in vitro germination of olive cultivar Picual pollen were analysed by RNA-seq. A bioinformatics R workflow called RSeqFlow was developed contemplating the best practices described in the literature, covering from expression data filtering to differential expression and clustering, to finally propose hub genes. The resulting olive pollen transcriptome consisted of 22,418 reliable transcripts, where 5364 were differentially expressed, out of which 173 have no orthologue in plants and up to 3 of them might be pollen-specific transcription factors. Functional enrichment revealed a deep transcriptional reprogramming in mature olive pollen that is also dependent on protein stability and turnover to allow pollen tube emergence, with many hub genes related to heat shock proteins and F-box-containing proteins. Reprogramming extends to the first 3 h of growth, including processes consistent with studies performed in other plant species, such as global down-regulation of biosynthetic processes, vesicle/organelle trafficking and cytoskeleton remodelling. In the last stages, growth should be maintained from persistent transcripts. Mature pollen is equipped with transcripts to successfully cope with adverse environments, even though the in vitro growth seems to induce several stress responses. Finally, pollen-specific transcription factors were proposed as probable drivers of pollen germination in olive trees, which also shows an overall increased number of pollen-specific gene isoforms relative to other plants.
Collapse
Affiliation(s)
- Amanda Bullones
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, 29010 Malaga, Spain;
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-UMA-CSIC), 29010 Malaga, Spain;
| | - Antonio Jesús Castro
- Plant Reproductive Biology and Advanced Imaging Laboratory (BReMAP), Estación Experimental del Zaidín (EEZ-CSIC), 18008 Granada, Spain; (A.J.C.); (E.L.-C.); (J.d.D.A.)
| | - Elena Lima-Cabello
- Plant Reproductive Biology and Advanced Imaging Laboratory (BReMAP), Estación Experimental del Zaidín (EEZ-CSIC), 18008 Granada, Spain; (A.J.C.); (E.L.-C.); (J.d.D.A.)
| | - Noe Fernandez-Pozo
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-UMA-CSIC), 29010 Malaga, Spain;
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática, Supercomputing and Bioinnovation Center (SCBI), Universidad de Málaga, 29590 Malaga, Spain;
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Imaging Laboratory (BReMAP), Estación Experimental del Zaidín (EEZ-CSIC), 18008 Granada, Spain; (A.J.C.); (E.L.-C.); (J.d.D.A.)
- University Institute of Research on Olive Grove and Olive Oils (INUO), Universidad de Jaén, 23071 Jaen, Spain
| | - Manuel Gonzalo Claros
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, 29010 Malaga, Spain;
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-UMA-CSIC), 29010 Malaga, Spain;
- CIBER de Enfermedades Raras (CIBERER) U741, 29071 Malaga, Spain
- Institute of Biomedical Research in Málaga (IBIMA), IBIMA-RARE, 29010 Malaga, Spain
| |
Collapse
|