1
|
Haghi Navand A, Jalilian S, Ahmadi Angali K, Karimi Babaahmadi M, Talaiezadeh A, Makvandi M. A new evaluation of the rearranged non-coding control region of JC virus in patients with colorectal cancer. BMC Cancer 2024; 24:1001. [PMID: 39134946 PMCID: PMC11320957 DOI: 10.1186/s12885-024-12684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Several studies have reported the presence of JC virus (JCV) in human tumors, The association of JCV and CRC remains controversial. This study aimed to evaluate the rearranged NCCR region of the detected JCV DNA in CRC patients' tissue samples. METHODS In this case-control study, tumor tissues (n = 60), adjacent normal tissues (n = 60), and urine samples (n = 60) of the CRC patients were collected. The nested PCR was employed to detect the VP1 and NCCR regions of the JCV genome. The positive JCV PCR products were sequenced and a phylogenetic tree was constructed to determine the JCV genotypes. After extracting RNA and preparing cDNA, the expression of JCV LTAg was examined in 60 tumor tissues and 60 adjacent normal tissues. The analysis of JCV LTAg expression was performed using GraphPad Prism software version 8. RESULTS The analysis reveals that JCV DNA was detected in 35/60 (58.3%) tumor tissues, while 36/60 (60.0%) of adjacent normal tissues (p = 0.85). JCV DNA was detected in 42/60 (70.0%) urine samples when compared to 35/60 (58.3%) tumor tissues of CRC patients and was not found significant (P = 0.25). The phylogenetic tree analysis showed the dominant JCV genotype 3, followed by genotype 2D was distributed in tumor tissue, normal tissue, and urine samples of the CRC patients. Analysis of randomly selected NCCR sequences from JCV regions in tumor tissue samples revealed the presence of rearranged NCCR blocks of different lengths.: 431 bp, 292 bp, 449 bp, and 356 bp. These rearranged NCCR blocks differ from the rearranged NCCR blocks described in PML-type Mad-1, Mad-4, Mad-7, and Mad-8 prototypes. The expression of JCV LTAg was significantly different in tumor tissue compared to normal tissue, with a p-value of less than 0.002. CONCLUSION A significant proportion of 35%> of the tumor tissue and urine samples of the CRC patients was found to be positive for JCV DNA (P = 0.25). The parallel analysis of tumor and urine samples for JCV DNA further supports the potential for non-invasive screening tools. This study provides new insights into Rearranged NCCR variant isolates from patients with CRC. The significant difference in JCV LTAg expression between tumor and normal tissue indicates a latent JCV status potentially leading to cancer development.
Collapse
Grants
- NO. CRC-0113 Cancer, Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- NO. CRC-0113 Cancer, Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- NO. CRC-0113 Cancer, Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- NO. CRC-0113 Cancer, Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- NO. CRC-0113 Cancer, Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- NO. CRC-0113 Cancer, Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
Collapse
Affiliation(s)
- Azadeh Haghi Navand
- Cancer, Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahram Jalilian
- Cancer, Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kambiz Ahmadi Angali
- Biostatistics and Epidemiology Department, Health School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Karimi Babaahmadi
- Department of Medical Biotechnology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Manoochehr Makvandi
- Cancer, Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Rossi C, Inzani FS, Cesari S, Rizzo G, Paulli M, Pedrazzoli P, Lasagna A, Lucioni M. The Role of Oncogenic Viruses in the Pathogenesis of Sporadic Breast Cancer: A Comprehensive Review of the Current Literature. Pathogens 2024; 13:451. [PMID: 38921749 PMCID: PMC11206847 DOI: 10.3390/pathogens13060451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Breast cancer is the most common malignancy in the female sex; although recent therapies have significantly changed the natural history of this cancer, it remains a significant challenge. In the past decade, evidence has been put forward that some oncogenic viruses may play a role in the development of sporadic breast cancer; however, data are scattered and mostly reported as sparse case series or small case-control studies. In this review, we organize and report current evidence regarding the role of high-risk human papillomavirus, mouse mammary tumor virus, Epstein-Barr virus, cytomegalovirus, bovine leukemia virus, human polyomavirus 2, and Merkel cell polyomavirus in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Chiara Rossi
- Section of Anatomic Pathology, Cerba HealthCare Lombardia, 20139 Milan, Italy
| | - Frediano Socrate Inzani
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Stefania Cesari
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Gianpiero Rizzo
- Unit of Medical Oncology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Marco Paulli
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Paolo Pedrazzoli
- Unit of Medical Oncology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Angioletta Lasagna
- Unit of Medical Oncology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Marco Lucioni
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| |
Collapse
|
3
|
Klufah F, Mobaraki G, Shi S, Marcelissen T, Alharbi RA, Mobarki M, Almalki SSR, van Roermund J, zur Hausen A, Samarska I. Human polyomaviruses JCPyV and MCPyV in urothelial cell carcinoma: a single institution experience. Front Oncol 2023; 13:1251244. [PMID: 38192628 PMCID: PMC10773619 DOI: 10.3389/fonc.2023.1251244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Objective Urothelial cell carcinoma (UCC) is the most common type of urinary bladder. JCPyV and BKPyV have been detected in the urine and tissue of urothelial cell carcinomas (UCC) in immunocompetent patients. Here, we investigated the presence of several HPyVs in UCC samples using diverse molecular techniques to study the prevalence of HPyVs in UCC. Methods A large single-institution database of urine cytology specimens (UCS; n = 22.867 UCS) has previously been searched for decoy cells (n = 30), suggesting polyomavirus infection. The available urine sediments and formalin-fixed paraffin-embedded (FFPE) tissue samples of UCC patients were tested for the presence of JCPyV-LTAg expression by immunohistochemistry (IHC) labeled with SV40-LTAg antibody (clone: PAb416) and subsequent PCR followed by sequencing. In addition, the presence of the oncogenic Merkel cell polyomavirus (MCPyV) and the presence of human polyomavirus 6 (HPyV6) and 7 (HPyV7) DNA were tested with DNA PCR or IHC. Results Of the 30 patients harboring decoy cells, 14 were diagnosed with UCC of the urinary bladder (14/30; 46.6%) before presenting with decoy cells in the urine. The SV40-LTAg IHC was positive in all 14 UCC urine sediments and negative in the FFPE tissues. JCPyV-DNA was identified in all five available UCS and in three FFPE samples of UCC (three of 14; 21.4%). Two UCC cases were positive for MCPyV-DNA (two of 14; 14.3%), and one of them showed protein expression by IHC (one of 14; 7.1%). All specimens were HPyV6 and HPyV7 negative. Conclusion Our findings show the presence of JCPyV in the urine and UCC of immunocompetent patients. Moreover, MCPyV was detected in two UCC cases. In total, five UCC cases showed the presence of either JCPyV or MCPyV. The evidence here supports the hypothesis that these viruses might sporadically be associated with UCC. Further studies are needed to confirm the relevance of JCPyV or MCPyV as a possible risk factor for UCC development.
Collapse
Affiliation(s)
- Faisal Klufah
- Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University, Medical Centre+, Maastricht, Netherlands
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Ghalib Mobaraki
- Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University, Medical Centre+, Maastricht, Netherlands
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shuai Shi
- Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University, Medical Centre+, Maastricht, Netherlands
| | - Tom Marcelissen
- Department of Urology, Maastricht University, Medical Centre+, Maastricht, Netherlands
| | - Raed A. Alharbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mousa Mobarki
- Pathology Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Shaia Saleh R. Almalki
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Joep van Roermund
- Department of Urology, Maastricht University, Medical Centre+, Maastricht, Netherlands
| | - Axel zur Hausen
- Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University, Medical Centre+, Maastricht, Netherlands
| | - Iryna Samarska
- Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University, Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
4
|
Zheng HC, Xue H, Sun HZ, Yun WJ, Cui ZG. The potential oncogenic effect of tissue-specific expression of JC polyoma T antigen in digestive epithelial cells. Transgenic Res 2023; 32:305-319. [PMID: 37247123 PMCID: PMC10409682 DOI: 10.1007/s11248-023-00352-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
JC polyoma virus (JCPyV), a ubiquitous polyoma virus that commonly infects people, is identified as the etiologic factor for progressive multifocal leukoencephalopathy and has been closely linked to various human cancers. Transgenic mice of CAG-loxp-Laz-loxp T antigen were established. T-antigen expression was specifically activated in gastroenterological target cells with a LacZ deletion using a cre-loxp system. Gastric poorly-differentiated carcinoma was observed in T antigen-activated mice using K19-cre (stem-like cells) and PGC-cre (chief cells), but not Atp4b-cre (parietal cells) or Capn8-cre (pit cells) mice. Spontaneous hepatocellular and colorectal cancers developed in Alb-cre (hepatocytes)/T antigen and villin-cre (intestinal cells)/T antigen transgenic mice respectively. Gastric, colorectal, and breast cancers were observed in PGC-cre/T antigen mice. Pancreatic insulinoma and ductal adenocarcinoma, gastric adenoma, and duodenal cancer were detected in Pdx1-cre/T antigen mice. Alternative splicing of T antigen mRNA occurred in all target organs of these transgenic mice. Our findings suggest that JCPyV T antigen might contribute to gastroenterological carcinogenesis with respect to cell specificity. Such spontaneous tumor models provide good tools for investigating the oncogenic roles of T antigen in cancers of the digestive system.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China.
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Hong-Zhi Sun
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Wen-Jing Yun
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui, 910-1193, Japan
| |
Collapse
|
5
|
Karimi AA, Tarharoudi R, Kianmehr Z, Sakhaee F, Jamnani FR, Siadat SD, Fateh A. Traces of JC polyomavirus in papillary thyroid cancer: a comprehensive study in Iran. Virol J 2022; 19:153. [PMID: 36163265 PMCID: PMC9513940 DOI: 10.1186/s12985-022-01881-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background JC polyomavirus (JCPyV) is known to induce solid tumors such as astrocytomas, glioblastomas, and neuroblastomas in experimental animals, and recent studies have shown that the virus may be correlated with carcinogenesis. This study aimed to evaluate the impact of JCPyV on the progression of papillary thyroid cancer (PTC). Methods A total of 1057 samples, including 645 paraffin-embedded PTC biopsy samples (PEBS) and 412 fresh biopsy samples (FBS), and 1057 adjacent non-cancerous samples were evaluated for the presence of JCPyV DNA and RNA. Results We observed that 10.8% (114/1057) samples, including 17.5% (72/412) FBS and 6.5% (42/645) PEBS were positive for the JCPyV DNA. Among the JCPyV-positive samples, the mean JCPyV copy number was lower in patients with PEBS (0.3 × 10–4 ± 0.1 × 10–4 copies/cell) compared to FBS (1.8 × 10–1 ± 0.4 × 10–1 copies/cell) and non-PTC normal samples (0.2 × 10–5 ± 0.01 × 10–5 copies/cell), with a statistically significant difference (P < 0.001). The LT-Ag RNA expression was lower in PEBS than in FBS, while no VP1 gene transcript expression was found. Conclusions Although our results confirmed the presence of JCPyV in some Iranian patients with PTC, more research is needed to verify these results.
Collapse
Affiliation(s)
- Amir Ali Karimi
- Department of Biotechnology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Rahil Tarharoudi
- Department of Molecular and Cellular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Kianmehr
- Department of Biochemistry, Faculty of Biological Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Fatemeh Sakhaee
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Rahimi Jamnani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran. .,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Zheng HC, Xue H, Zhang CY. The oncogenic roles of JC polyomavirus in cancer. Front Oncol 2022; 12:976577. [PMID: 36212474 PMCID: PMC9537617 DOI: 10.3389/fonc.2022.976577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
JC polyomavirus (JCPyV) belongs to the human polyomavirus family. Based on alternative splicing, the early region encodes the large and small T antigens, while the late region encodes the capsid structural proteins (VP1, VP2, and VP3) and the agnoprotein. The regulatory transcription factors for JCPyV include Sp1, TCF-4, DDX1, YB-1, LCP-1, Purα, GF-1, and NF-1. JCPyV enters tonsillar tissue through the intake of raw sewage, inhalation of air droplets, or parent-to-child transmission. It persists quiescently in lymphoid and renal tissues during latency. Both TGF-β1 and TNF-α stimulates JCPyV multiplication, while interferon-γ suppresses the process. The distinct distribution of caspid receptors (α-2, 6-linked sialic acid, non-sialylated glycosaminoglycans, and serotonin) determines the infection capabilities of JCPyV virions, and JCPyV entry is mediated by clathrin-mediated endocytosis. In permissive cells, JCPyV undergoes lytic proliferation and causes progressive multifocal leukoencephalopathy, while its DNA is inserted into genomic DNA and leads to carcinogenesis in non-permissive cells. T antigen targets p53, β-catenin, IRS, Rb, TGF-β1, PI3K/Akt and AMPK signal pathways in cancer cells. Intracranial injection of T antigen into animals results in neural tumors, and transgenic mice develop neural tumors, lens tumor, breast cancer, gastric, Vater’s, colorectal and pancreatic cancers, insulinoma, and hepatocellular carcinoma. Additionally, JCPyV DNA and its encoded products can be detected in the brain tissues of PML patients and brain, oral, esophageal, gastric, colorectal, breast, cervical, pancreatic, and hepatocellular cancer tissues. Therefore, JCPyV might represent an etiological risk factor for carcinogenesis and should be evaluated for early prevention, diagnosis, and treatment of cancers.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-chuan Zheng,
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
7
|
Shahrear S, Zinnia MA, Ahmed T, Islam ABMMK. Deciphering the role of predicted miRNAs of polyomaviruses in carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166537. [PMID: 36089125 DOI: 10.1016/j.bbadis.2022.166537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/13/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022]
Abstract
Human polyomaviruses are relatively common in the general population. Polyomaviruses maintain a persistent infection after initial infection in childhood, acting as an opportunistic pathogen in immunocompromised populations and their association has been linked to carcinogenesis. A comprehensive understanding of the underlying molecular mechanisms of carcinogenesis in consequence of polyomavirus infection remains elusive. However, the critical role of viral miRNAs and their potential targets in modifying the transcriptome profile of the host remains largely unknown. Polyomavirus-derived miRNAs have the potential to play a substantial role in carcinogenesis. Employing computational approaches, putative viral miRNAs along with their target genes have been predicted and possible roles of the targeted genes in many significant biological processes have been obtained. Polyomaviruses have been observed to target intracellular signal transduction pathways through miRNA-mediated epigenetic regulation, which may contribute to cancer development. In addition, BKPyV-infected human renal cell microarray data was coupled with predicted target genes and analysis of the downregulated genes indicated that viruses target multiple signaling pathways (e.g. MAPK signaling pathway, PI3K-Akt signaling pathway, PPAR signaling pathway) in the host as well as turning off several tumor suppression genes (e.g. FGGY, EPHX2, CACNA2D3, CDH16) through miRNA-induced mechanisms, assuring cell transformation. This study provides a conceptual framework for the underlying molecular mechanisms involved in the course of carcinogenesis upon polyomavirus infection.
Collapse
Affiliation(s)
- Sazzad Shahrear
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | | - Tasnim Ahmed
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
8
|
A.V.S SK, Sinha S, Donakonda S. Virus-host interaction network analysis in Colorectal cancer identifies core virus network signature and small molecules. Comput Struct Biotechnol J 2022; 20:4025-4039. [PMID: 35983230 PMCID: PMC9356043 DOI: 10.1016/j.csbj.2022.07.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 11/15/2022] Open
Abstract
Systematic analysis of virus-host networks identified key pathways in CRC. Core virus-CRC network revealed the growth pathway regulated by viruses. Short linear motif analysis identified druggable regions in virus proteins. Virtual screening revealed key anti-viral molecules against viral proteins. Molecular dynamics simulations showed the effect of anti-viral molecules.
Colorectal cancer (CRC) is a significant contributor to cancer-related deaths caused by an unhealthy lifestyle. Multiple studies reveal that viruses are involved in colorectal tumorigenesis. The viruses such as Human Cytomegalovirus (HCMV), Human papillomaviruses (HPV16 & HPV18), and John Cunningham virus (JCV) are known to cause colorectal cancer. The molecular mechanisms of cancer genesis and maintenance shared by these viruses remain unclear. We analysed the virus-host networks and connected them with colorectal cancer proteome datasets and extracted the core shared interactions in the virus-host CRC network. Our network topology analysis identified prominent virus proteins RL6 (HCMV), VE6 (HPV16 and HPV18), and Large T antigen (JCV). Sequence analysis uncovered short linear motifs (SLiMs) in each viral target. We used these targets to identify the antiviral drugs through a structure-based virtual screening approach. This analysis highlighted that temsavir, pimodivir, famotine, and bictegravir bind to each virus protein target, respectively. We also assessed the effect of drug binding using molecular dynamic simulations, which shed light on the modulatory effect of drug molecules on SLiM regions in viral targets. Hence, our systematic screening of virus-host networks revealed viral targets, which could be crucial for cancer therapy.
Collapse
Affiliation(s)
- Sai Krishna A.V.S
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, India
| | - Swati Sinha
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, India
| | - Sainitin Donakonda
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
- Corresponding author.
| |
Collapse
|