1
|
Liu Y, Li W, Lei L, Zhou Y, Huang M, Li Y, Zhang X, Jiang Y, Wu H, Zheng Z, Ma K, Tang C. Effects of PGK1 on immunoinfiltration by integrated single-cell and bulk RNA-sequencing analysis in sepsis. Front Immunol 2024; 15:1449975. [PMID: 39712033 PMCID: PMC11659135 DOI: 10.3389/fimmu.2024.1449975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
Background Sepsis, a life-threatening organ dysfunction caused by a dysregulated immune response to infection, remains a significant global health challenge. Phosphoglycerate kinase 1 (PGK1) has been implicated in regulating inflammation and immune cell infiltration in inflammatory conditions. However, the role of PGK1 in sepsis remains largely unexplored. Methods Four microarray datasets and a high throughput sequencing dataset were acquired from GEO database to reveal the PGK1 expression in patients of sepsis. Quantitative real-time PCR and western blotting was then used to validate the PGK1 level. Additionally, microarray and single-cell RNA sequencing data integration, including gene set enrichment analysis (GSEA), KEGG and GO functional enrichment analysis, immune infiltration analysis, and single-cell sequencing analysis, were performed to elucidate the role of PGK1 in sepsis. Results Our results revealed a significant upregulation of PGK1 in sepsis patients, with the area under the ROC curve (AUC) exceeding 0.9 across multiple datasets, indicating PGK1's strong potential as a diagnostic biomarker. Notably, PGK1 was enriched in key immune-related pathways, including the TNF signaling pathways, and leukocyte transendothelial migration, suggesting its involvement in immune regulation. Furthermore, PGK1 expression showed a positive correlation with the levels of inflammatory mediators CXCL1, CXCL16, and the chemokine receptor CCR1. In terms of immune cell infiltration, PGK1 was positively correlated with naive B cells, resting memory CD4 T cell, gamma delta T cells, M0 macrophages, eosinophils and negatively correlated with plasma cells, CD8 T cells, activated memory CD4 T cell, Tregs, activated dendritic cells. Conclusions This study concluded that PGK1 served as a novel diagnostic biomarker for sepsis, with potential implications for prognosis and immune regulation. The significant upregulation of PGK1 in sepsis patients and its association with immune-related pathways and cell types highlight its potential role in the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weijie Li
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, China
| | - Lei Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yaoliang Zhou
- Emergency and Disaster Medical Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Mingcheng Huang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yide Li
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoying Zhang
- Health Management Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yingyu Jiang
- Department of Renal Rheumatology and Immunology, The People’s Hospital of Hezhou, Hezhou, China
| | - Haiqi Wu
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, China
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kongyang Ma
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Oliveira RCD, Cavalcante GC, Soares-Souza GB. Exploring Aerobic Energy Metabolism in Breast Cancer: A Mutational Profile of Glycolysis and Oxidative Phosphorylation. Int J Mol Sci 2024; 25:12585. [PMID: 39684297 DOI: 10.3390/ijms252312585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Energy metabolism is a fundamental aspect of the aggressiveness and invasiveness of breast cancer (BC), the neoplasm that most affects women worldwide. Nonetheless, the impact of genetic somatic mutations on glycolysis and oxidative phosphorylation (OXPHOS) genes in BC remains unclear. To fill these gaps, the mutational profiles of 205 screened genes related to glycolysis and OXPHOS in 968 individuals with BC from The Cancer Genome Atlas (TCGA) project were performed. We carried out analyses to characterize the mutational profile of BC, assess the clonality of tumors, identify somatic mutation co-occurrence, and predict the pathogenicity of these alterations. In total, 408 mutations in 132 genes related to the glycolysis and OXPHOS pathways were detected. The PGK1, PC, PCK1, HK1, DONSON, GPD1, NDUFS1, and FOXRED1 genes are also associated with the tumorigenesis process in other types of cancer, as are the genes BRCA1, BRCA2, and HMCN1, which had been previously described as oncogenes in BC, with whom the target genes of this work were associated. Seven mutations were identified and highlighted due to the high pathogenicity, which are present in more than one of our results and are documented in the literature as being correlated with other diseases. These mutations are rs267606829 (FOXRED1), COSV53860306 (HK1), rs201634181 (NDUFS1), rs774052186 (DONSON), rs119103242 (PC), rs1436643226 (PC), and rs104894677 (ETFB). They could be further investigated as potential biomarkers for diagnosis, prognosis, and treatment of BC patients.
Collapse
Affiliation(s)
- Ricardo Cunha de Oliveira
- Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Giovanna C Cavalcante
- Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Giordano B Soares-Souza
- Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Instituto Tecnológico Vale (ITV-DS), Belém 66055-090, Pará, Brazil
| |
Collapse
|
3
|
Cui J, Chai S, Liu R, Shen G. Targeting PGK1: A New Frontier in Breast Cancer Therapy Under Hypoxic Conditions. Curr Issues Mol Biol 2024; 46:12214-12229. [PMID: 39590319 PMCID: PMC11593045 DOI: 10.3390/cimb46110725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Breast cancer represents one of the most prevalent malignant neoplasms affecting women, and its pathogenesis has garnered significant scholarly interest. Research indicates that the progression of breast cancer is intricately regulated by glucose metabolism. Under hypoxic conditions within the tumor microenvironment, breast cancer cells generate ATP and essential biosynthetic precursors for growth via the glycolytic pathway. Notably, phosphoglycerate kinase 1 (PGK1) is intimately associated with the regulation of hypoxia-inducible factors in breast cancer and plays a crucial role in modulating glycolytic processes. Further investigation into the role of PGK1 in breast cancer pathogenesis is anticipated to identify novel therapeutic targets and strategies. This review consolidates current research on the regulation of glucose metabolism and the function of PGK1 in breast cancer within hypoxic conditions. It aims to offer a significant theoretical foundation for elucidating the mechanisms underlying breast cancer progression and metastasis, thereby facilitating the development of innovative treatment approaches.
Collapse
Affiliation(s)
- Jiayong Cui
- Clinical Medicine College, Graduate School of Qinghai University, Xining 810000, China; (J.C.); (S.C.); (R.L.)
- Breast Disease Diagnosis and Treatment Cencer, Affiliated Hospital of Qinghai University, Xining 810000, China
| | - Shengjun Chai
- Clinical Medicine College, Graduate School of Qinghai University, Xining 810000, China; (J.C.); (S.C.); (R.L.)
| | - Rui Liu
- Clinical Medicine College, Graduate School of Qinghai University, Xining 810000, China; (J.C.); (S.C.); (R.L.)
- Breast Disease Diagnosis and Treatment Cencer, Affiliated Hospital of Qinghai University, Xining 810000, China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Cencer, Affiliated Hospital of Qinghai University, Xining 810000, China
| |
Collapse
|
4
|
Chen JY, Li JD, He RQ, Huang ZG, Chen G, Zou W. Bibliometric analysis of phosphoglycerate kinase 1 expression in breast cancer and its distinct upregulation in triple-negative breast cancer. World J Clin Oncol 2024; 15:867-894. [PMID: 39071464 PMCID: PMC11271732 DOI: 10.5306/wjco.v15.i7.867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Phosphoglycerate kinase 1 (PGK1) has been identified as a possible biomarker for breast cancer (BC) and may play a role in the development and advancement of triple-negative BC (TNBC). AIM To explore the PGK1 and BC research status and PGK1 expression and mechanism differences among TNBC, non-TNBC, and normal breast tissue. METHODS PGK1 and BC related literature was downloaded from Web of Science Core Collection Core Collection. Publication counts, key-word frequency, cooperation networks, and theme trends were analyzed. Normal breast, TNBC, and non-TNBC mRNA data were gathered, and differentially expressed genes obtained. Area under the summary receiver operating characteristic curves, sensitivity and specificity of PGK1 expression were determined. Kaplan Meier revealed PGK1's prognostic implication. PGK1 co-expressed genes were explored, and Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Disease Ontology applied. Protein-protein interaction networks were constructed. Hub genes identified. RESULTS PGK1 and BC related publications have surged since 2020, with China leading the way. The most frequent keyword was "Expression". Collaborative networks were found among co-citations, countries, institutions, and authors. PGK1 expression and BC progression were research hotspots, and PGK1 expression and BC survival were research frontiers. In 16 TNBC vs non-cancerous breast and 15 TNBC vs non-TNBC datasets, PGK1 mRNA levels were higher in 1159 TNBC than 1205 non-cancerous breast cases [standardized mean differences (SMD): 0.85, 95% confidence interval (95%CI): 0.54-1.16, I² = 86%, P < 0.001]. PGK1 expression was higher in 1520 TNBC than 7072 non-TNBC cases (SMD: 0.25, 95%CI: 0.03-0.47, I² = 91%, P = 0.02). Recurrence free survival was lower in PGK1-high-expression than PGK1-low-expression group (hazard ratio: 1.282, P = 0.023). PGK1 co-expressed genes were concentrated in ATP metabolic process, HIF-1 signaling, and glycolysis/gluconeogenesis pathways. CONCLUSION PGK1 expression is a research hotspot and frontier direction in the BC field. PGK1 may play a strong role in promoting cancer in TNBC by mediating metabolism and HIF-1 signaling pathways.
Collapse
Affiliation(s)
- Jing-Yu Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jian-Di Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Wen Zou
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
5
|
Shi M, Huang K, Wei J, Wang S, Yang W, Wang H, Li Y. Identification and Validation of a Prognostic Signature Derived from the Cancer Stem Cells for Oral Squamous Cell Carcinoma. Int J Mol Sci 2024; 25:1031. [PMID: 38256104 PMCID: PMC10816075 DOI: 10.3390/ijms25021031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The progression and metastasis of oral squamous cell carcinoma (OSCC) are highly influenced by cancer stem cells (CSCs) due to their unique self-renewal and plasticity. In this study, data were obtained from a single-cell RNA-sequencing dataset (GSE172577) in the GEO database, and LASSO-Cox regression analysis was performed on 1344 CSCs-related genes to establish a six-gene prognostic signature (6-GPS) consisting of ADM, POLR1D, PTGR1, RPL35A, PGK1, and P4HA1. High-risk scores were significantly associated with unfavorable survival outcomes, and these features were thoroughly validated in the ICGC. The results of nomograms, calibration plots, and ROC curves confirmed the good prognostic accuracy of 6-GPS for OSCC. Additionally, the knockdown of ADM or POLR1D genes may significantly inhibit the proliferation, migration, and invasion of OSCC cells through the JAK/HIF-1 pathway. Furthermore, cell-cycle arrest occurred in the G1 phase by suppressing Cyclin D1. In summary, 6-GPS may play a crucial role in the occurrence and development of OSCC and has the potential to be developed further as a diagnostic, therapeutic, and prognostic tool for OSCC.
Collapse
Affiliation(s)
- Mingxuan Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
| | - Ke Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China
| | - Jiaqi Wei
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
| | - Shiqi Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
| | - Weijia Yang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
| | - Huihui Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
| | - Yi Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
| |
Collapse
|
6
|
Tian T, Leng Y, Tang B, Dong X, Ren Q, Liang J, Liu T, Liu Y, Feng W, Liu S, Zhou Y, Zhao H, Shen L. The oncogenic role and regulatory mechanism of PGK1 in human non-small cell lung cancer. Biol Direct 2024; 19:1. [PMID: 38163864 PMCID: PMC10759362 DOI: 10.1186/s13062-023-00448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Phosphoglycerate kinase 1 (PGK1) is a metabolic enzyme that participates in various biological and pathological processes. Dysregulated PGK1 has been observed in numerous malignancies. However, whether and how PGK1 affects non-small cell lung cancer (NSCLC) is not yet fully elucidated. METHODS Herein, the non-metabolic function of PGK1 in NSCLC was explored by integrating bioinformatics analyses, cellular experiments, and nude mouse xenograft models. The upstream regulators and downstream targets of PGK1 were examined using multiple techniques such as RNA sequencing, a dual-luciferase reporter assay, Co-immunoprecipitation, and Western blotting. RESULTS We confirmed that PGK1 was upregulated in NSCLC and this upregulation was associated with poor prognosis. Further in vitro and in vivo experiments demonstrated the promoting effects of PGK1 on NSCLC cell growth and metastasis. Additionally, we discovered that PGK1 interacted with and could be O-GlcNAcylated by OGT. The inhibition of PGK1 O-GlcNAcylation through OGT silencing or mutation at the T255 O-GlcNAcylation site could weaken PGK1-mediated NSCLC cell proliferation, colony formation, migration, and invasion. We also found that a low miR-24-3p level led to an increase in OGT expression. Additionally, PGK1 exerted its oncogenic properties by augmenting ERK phosphorylation and MCM4 expression. CONCLUSIONS PGK1 acted as a crucial mediator in controlling NSCLC progression. The miR-24-3p/OGT axis was responsible for PGK1 O-GlcNAcylation, and ERK/MCM4 were the downstream effectors of PGK1. It appears that PGK1 might be an attractive therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Tian Tian
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yahui Leng
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Bingbing Tang
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiaoxia Dong
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qiulei Ren
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jingyin Liang
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Tianhui Liu
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yanni Liu
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Wenxiao Feng
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Song Liu
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yang Zhou
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Hongyan Zhao
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Li Shen
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
7
|
Wang P, Wang YY, Xu YL, Zhang CY, Wang K, Wang Q. Phosphoglycerate-kinase-1 Is a Potential Prognostic Biomarker in HNSCC and Correlates With Immune Cell Infiltration. Cancer Genomics Proteomics 2023; 20:723-734. [PMID: 38035710 PMCID: PMC10687726 DOI: 10.21873/cgp.20419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND/AIM Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cancer worldwide, with a high recurrence rate and a low cure rate. Phosphoglycerate kinase 1 (PGK1), an essential enzyme in the aerobic glycolysis pathway, is a prognostic marker for a variety of cancers. However, it remains unclear whether a PGK1-based immune signature can be used as a prognostic biomarker in HNSCC patients. MATERIALS AND METHODS We explored the potential oncogenic mechanisms of PGK1 by multiple bioinformatics analyses combined with multiple databases, including the correlation between PGK1 and prognosis, and the infiltration of immune cells in HNSCC. Functional enrichment analyses were further performed to investigate the potential role of PGK1 in HNSCC. RESULTS The expression of PGK1 was significantly higher in HNSCC tissues compared to normal tissues. High expression of PGK1 was associated with poor prognosis in HNSCC, and multivariate cox regression analysis showed that PGK1 could be an independent prognostic factor in HNSCC. Pathway analysis revealed that PGK1 may regulate the pathogenesis of HNSCC through the immune signaling pathway. Moreover, PGK1 expression significantly correlated with the infiltration level of 16 types of immune cells. CONCLUSION The current study reports that PGK1 expression was increased in HNSCC and that high PGK1 expression was closely associated with poor prognosis and immune cell infiltration, which could serve as a promising independent prognostic biomarker and potential immunotherapeutic target for HNSCC.
Collapse
Affiliation(s)
- Ping Wang
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, P.R. China
| | - Yue-Yue Wang
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, P.R. China
| | - Yang-Long Xu
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, P.R. China
| | - Chun-Yu Zhang
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, P.R. China
| | - Kun Wang
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, P.R. China;
| | - Qian Wang
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, P.R. China;
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, P.R. China
| |
Collapse
|
8
|
Wei S, Zhang Y, Ma X, Yao Y, Zhou Q, Zhang W, Zhou C, Zhuang J. MAT as a promising therapeutic strategy against triple-negative breast cancer via inhibiting PI3K/AKT pathway. Sci Rep 2023; 13:12351. [PMID: 37524857 PMCID: PMC10390516 DOI: 10.1038/s41598-023-39655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
Triple-negative breast cancer (TNBC), a highly aggressive and heterogeneous subtype of breast cancer, lacks effective treatment options. Sophora flavescens Aiton, a Chinese medicinal plant, is often used in traditional Chinese medicine to treat cancer. Matrine (MAT) is an alkaloid extracted from Sophora flavescens. It has good anticancer effects, and thus can be explored as a new therapeutic agent in TNBC research. We performed bioinformatics analysis to analyze the differentially expressed genes between normal breast tissues and TNBC tissues, and comprehensive network pharmacology analyses. The activity and invasion ability of TNBC cells treated with MAT were analyzed. Apoptosis and cell cycle progression were determined using cytometry. We used Monodansylcadaverine (MDC) staining to determine the condition of autophagosomes. Finally, the expression levels of the key target proteins of the PI3K/AKT pathway were determined using western blotting. The proliferation and invasion ability of MDA-MB-231 and MDA-MB-468 can be effectively inhibited by MAT. The results of flow cytometry indicated that MAT arrested the TNBC cell cycle and induced apoptosis. In addition, we confirmed that MAT inhibited the expression of BCL-2 while up-regulating the expression of cleaved caspase-3. Moreover, enhanced intensity of MDC staining and high LC3-II expression were observed, which confirmed that MAT induced autophagy in TNBC cells. Western blotting showed that MAT inhibited the PI3K/AKT pathway and downregulated the expressions of PI3K, AKT, p-AKT, and PGK1. This study provides feasible methods, which include bioinformatics analysis and in vitro experiments, for the identification of compounds with anti-TNBC properties. MAT inhibited the PI3K/AKT signaling pathway, arrested cell cycle, as well as promoted cell apoptosis and autophagy. These experiments provide evidence for the anti-TNBC effect of MAT and identified potential targets against TNBC.
Collapse
Affiliation(s)
- Shijie Wei
- Institute of Integrated Medicine, Qingdao University, Qingdao, 266071, China
- Department of Oncology, The Affiliated Qingdao Hiser hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, 266071, China
| | - Yubao Zhang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaoran Ma
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yan Yao
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Qinqin Zhou
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China
| | - Wenfeng Zhang
- Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China
| | - Chao Zhou
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
| |
Collapse
|
9
|
Zhong J, Shen X, Zhou J, Yu H, Wang B, Sun J, Wang J, Liu F. Development and validation of a combined hypoxia and ferroptosis prognostic signature for breast cancer. Front Oncol 2023; 13:1077342. [PMID: 36998462 PMCID: PMC10043308 DOI: 10.3389/fonc.2023.1077342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundHypoxia is involved in tumor biological processes and disease progression. Ferroptosis, as a newly discovered programmed cell death process, is closely related to breast cancer (BC) occurrence and development. However, reliable prognostic signatures based on a combination of hypoxia and ferroptosis in BC have not been developed.MethodWe set The Cancer Genome Atlas (TCGA) breast cancer cohort as training set and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) BC cohort as the validation set. Least Absolute Shrinkage and Selection Operator (LASSO) and COX regression approaches were used to construct ferroptosis-related genes (FRGs) and hypoxia-related genes (HRGs) prognostic signature (HFRS). The CIBERSORT algorithm and ESTIMATE score were used to explore the relationship between HFRS and tumor immune microenvironment. Immunohistochemical staining was used to detect protein expression in tissue samples. A nomogram was developed to advance the clinical application of HFRS signature.ResultsTen ferroptosis-related genes and hypoxia-related genes were screened to construct the HFRS prognostic signature in TCGA BC cohort, and the predictive capacity was verified in METABRIC BC cohort. BC patients with high-HFRS had shorter survival time, higher tumor stage, and a higher rate of positive lymph node. Moreover, high HFRS was associated with high hypoxia, ferroptosis, and immunosuppression status. A nomogram that was constructed with age, stage, and HFRS signature showed a strong prognostic capability to predict overall survival (OS) for BC patients.ConclusionWe developed a novel prognostic model with hypoxia and ferroptosis-related genes to predict OS, and characterize the immune microenvironment of BC patients, which might provide new cures for clinical decision-making and individual treatment of BC patients.
Collapse
Affiliation(s)
- Jianxin Zhong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xi Shen
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junjie Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heping Yu
- Department of Thyroid and Breast Surgery, Wuhan Fourth Hospital, Wuhan, China
| | - Birong Wang
- Department of Thyroid and Breast Surgery, Wuhan Fourth Hospital, Wuhan, China
| | - Jianbin Sun
- Department of Thyroid and Breast Surgery, Wuhan Fourth Hospital, Wuhan, China
| | - Jing Wang
- Department of Thoracic Surgery, Wuhan Fourth Hospital, Wuhan, China
- *Correspondence: Jing Wang, ; Feng Liu,
| | - Feng Liu
- Department of Thyroid and Breast Surgery, Wuhan Fourth Hospital, Wuhan, China
- *Correspondence: Jing Wang, ; Feng Liu,
| |
Collapse
|