1
|
McIvor JAP, Larsen DS, Mercadante D. Charge Relaying within a Phospho-Motif Rescue Binding Competency of a Disordered Transcription Factor. J Chem Inf Model 2024; 64:6041-6052. [PMID: 39074869 DOI: 10.1021/acs.jcim.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Structural disorder in proteins is central to cellular signaling, where conformational plasticity equips molecules to promiscuously interact with different partners. By engaging with multiple binding partners via the rearrangement of its three helices, the nuclear coactivator binding domain (NCBD) of the CBP/p300 transcription factor is a paradigmatic example of promiscuity. Recently, molecular simulations and experiments revealed that, through the establishment of long-range electrostatic interactions, intended as salt-bridges formed between the post-translationally inserted phosphate and positively charged residues in helix H3 of NCBD, phosphorylation triggers NCBD compaction, lowering its affinity for binding partners. By means of extensive molecular simulations, we here investigated the effect of short-range electrostatics on the conformational ensemble of NCBD, by monitoring the interactions between a phosphorylated serine and conserved positively charged residues within the NCBD phospho-motif. We found that empowering proximal electrostatic interactions, as opposed to long-range electrostatics, can reshape the NCBD ensemble rescuing the binding competency of phosphorylated NCBD. Given the conservation of positive charges in phospho-motifs, proximal electrostatic interactions might dampen the effects of phosphorylation and act as a relay to regulate phosphorylated intrinsically disordered proteins, ultimately tuning the binding affinity for different cellular partners.
Collapse
Affiliation(s)
- Jordan A P McIvor
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Danaé S Larsen
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Davide Mercadante
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Papamokos GV, Kaxiras E. How to evict HP1 from H3: Using a complex salt bridge. Biophys Chem 2023; 300:107062. [PMID: 37302360 DOI: 10.1016/j.bpc.2023.107062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/21/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
In an effort to unravel the unknown "binary switch" mechanisms underlying the "histone code" hypothesis of gene silencing and activation, we study the dynamics of Heterochromatin Protein 1 (HP1). We find in the literature that when HP1 is bound to tri-methylated Lysine9 (K9me3) of histone-H3 through an aromatic cage consisting of two tyrosines and one tryptophan, it is evicted upon phosphorylation of Serine10 (S10phos) during mitosis. In this work, the kick-off intermolecular interaction of the eviction process is proposed and described in detail on the basis of quantum mechanical calculations: specifically, an electrostatic interaction competes with the cation-π interaction and draws away K9me3 from the aromatic cage. An arginine, abundant in the histonic environment, can form an intermolecular "complex salt bridge" with S10phos and dislodge HP1. The study attempts to reveal the role of phosphorylation of Ser10 on the H3 tail in atomic detail.
Collapse
Affiliation(s)
- George V Papamokos
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA..
| | - Efthimios Kaxiras
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA..
| |
Collapse
|
3
|
Peng W, Wang Y, Zeng X, Li W, Song N, Liu J, Wang B, Dai L. Integrative transcriptomic, proteomic, and phosphoproteomic analysis on the defense response to Magnaporthe oryzae reveals different expression patterns at the molecular level of durably resistant rice cultivar Mowanggu. FRONTIERS IN PLANT SCIENCE 2023; 14:1212510. [PMID: 37521912 PMCID: PMC10373791 DOI: 10.3389/fpls.2023.1212510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
Rice blast, caused by Magnaporthe oryzae is one of the most destructive diseases of rice (Oryza sativa L.) in most rice-cultivated areas worldwide. Mowanggu (MWG) is a traditional landrace rice variety in Yunnan with broad-spectrum and durable blast resistance against rice blast fungus. However, the underlying disease-resistance mechanisms remain unknown. An integrative transcriptomic, proteomic, and phosphoproteomic analysis of MWG was performed after inoculation with M. oryzae in this study. The transcriptomic and proteomic results revealed that MWG was moderately correlated at the transcriptional and protein levels. Differentially expressed genes and proteins were up-regulated and significantly enriched in protein phosphorylation, peroxisome, plant-pathogen interactions, phenylpropanoid metabolism and phenylalanine biosynthesis pathways. The phosphoproteomic profile and phosphorylated-protein-interaction network revealed that the altered phosphoproteins were primarily associated with reactive oxygen species (ROS), glycolysis, MAPK signaling pathways, and amino acid biosynthesis. In addition, a series of physiological and biochemical parameters, including ROS, soluble sugars, soluble protein and callus accumulation and defense-related enzyme activities, were used to validate the possible blast resistance mechanisms of MWG. The integrative transcriptomic, proteomic, and phosphoproteomic analysis revealed the different expression patterns at the molecular level of the durably resistant rice cultivar MWG after inoculation with M. oryzae, which provides insight into the molecular mechanisms of rice blast resistance.
Collapse
Affiliation(s)
- Weiye Peng
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, China
| | - Yunsheng Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Xuanning Zeng
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Wei Li
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Na Song
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Bing Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Liangying Dai
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
4
|
Newcombe EA, Delaforge E, Hartmann-Petersen R, Skriver K, Kragelund BB. How phosphorylation impacts intrinsically disordered proteins and their function. Essays Biochem 2022; 66:901-913. [PMID: 36350035 PMCID: PMC9760426 DOI: 10.1042/ebc20220060] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022]
Abstract
Phosphorylation is the most common post-translational modification (PTM) in eukaryotes, occurring particularly frequently in intrinsically disordered proteins (IDPs). These proteins are highly flexible and dynamic by nature. Thus, it is intriguing that the addition of a single phosphoryl group to a disordered chain can impact its function so dramatically. Furthermore, as many IDPs carry multiple phosphorylation sites, the number of possible states increases, enabling larger complexities and novel mechanisms. Although a chemically simple and well-understood process, the impact of phosphorylation on the conformational ensemble and molecular function of IDPs, not to mention biological output, is highly complex and diverse. Since the discovery of the first phosphorylation site in proteins 75 years ago, we have come to a much better understanding of how this PTM works, but with the diversity of IDPs and their capacity for carrying multiple phosphoryl groups, the complexity grows. In this Essay, we highlight some of the basic effects of IDP phosphorylation, allowing it to serve as starting point when embarking on studies into this topic. We further describe how recent complex cases of multisite phosphorylation of IDPs have been instrumental in widening our view on the effect of protein phosphorylation. Finally, we put forward perspectives on the phosphorylation of IDPs, both in relation to disease and in context of other PTMs; areas where deep insight remains to be uncovered.
Collapse
Affiliation(s)
- Estella A Newcombe
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- The Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Elise Delaforge
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- The Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Rasmus Hartmann-Petersen
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Karen Skriver
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Birthe B Kragelund
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- The Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
5
|
Gül N, Yıldız A. An in silico study of how histone tail conformation affects the binding affinity of ING family proteins. PeerJ 2022; 10:e14029. [PMID: 36199288 PMCID: PMC9528904 DOI: 10.7717/peerj.14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 01/19/2023] Open
Abstract
Background Due to its intrinsically disordered nature, the histone tail is conformationally heterogenic. Therefore, it provides specific binding sites for different binding proteins or factors through reversible post-translational modifications (PTMs). For instance, experimental studies stated that the ING family binds with the histone tail that has methylation on the lysine in position 4. However, numerous complexes featuring a methylated fourth lysine residue of the histone tail can be found in the UniProt database. So the question arose if other factors like the conformation of the histone tail affect the binding affinity. Methods The crystal structure of the PHD finger domain from the proteins ING1, ING2, ING4, and ING5 are docked to four histone H3 tails with two different conformations using Haddock 2.4 and ClusPro. The best four models for each combination are selected and a two-sample t-test is performed to compare the binding affinities of helical conformations vs. linear conformations using Prodigy. The protein-protein interactions are examined using LigPlot. Results The linear histone conformations in predicted INGs-histone H3 complexes exhibit statistically significant higher binding affinity than their helical counterparts (confidence level of 99%). The outputs of predicted models generated by the molecular docking programs Haddock 2.4 and ClusPro are comparable, and the obtained protein-protein interaction patterns are consistent with experimentally confirmed binding patterns. Conclusion The results show that the conformation of the histone tail is significantly affecting the binding affinity of the docking protein. Herewith, this in silico study demonstrated in detail the binding preference of the ING protein family to histone H3 tail. Further research on the effect of certain PTMs on the final tail conformation and the interaction between those factors seem to be promising for a better understanding of epigenetics.
Collapse
Affiliation(s)
- Nadir Gül
- Faculty of Natural Sciences, Turkish-German University, Istanbul, Turkey
| | - Ahmet Yıldız
- Faculty of Engineering, Turkish-German University, Istanbul, Turkey
| |
Collapse
|
6
|
The Activated AMPK/mTORC2 Signaling Pathway Associated with Oxidative Stress in Seminal Plasma Contributes to Idiopathic Asthenozoospermia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4240490. [PMID: 35720189 PMCID: PMC9200551 DOI: 10.1155/2022/4240490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/09/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Asthenozoospermia is a common form of abnormal sperm quality in idiopathic male infertility. While most sperm-mediated causes have been investigated in detail, the significance of seminal plasma has been neglected. Herein, we aimed to investigate the possible pathogenic factors leading to decreased sperm motility based on seminal plasma. Semen was collected from normo- (NOR, n = 70), idiopathic oligo- (OLI, n = 57), and idiopathic asthenozoospermic (AST, n = 53) patients. Using attenuated total reflection-Fourier transform infrared coupled with chemometrics, distinct differences in the biochemical compositions of nucleic acids, protein structure (amides I, II, and III), lipids, and carbohydrates in seminal plasma of AST were observed when compared to NOR and OLI. Compared with NOR and OLI, the levels of peptide aggregation, protein phosphorylation, unsaturated fatty acid, and lipid to protein ratio were significantly increased in AST; however, the level of lipid saturation was significantly decreased in seminal plasma of AST. Compared with NOR, the levels of ROS, MDA, 8-iso-prostaglandin F2α (8-isoPGF2α), and the ratio of phospho-AMPKα/AMPKα1 were significantly increased in AST; however, the levels of SOD, glutathione S-transferase (GSTs), protein carbonyl derivative (PC), and the ratio of phospho-Rictor/Rictor were significantly decreased in seminal plasma of AST. Changes of the AMPK/mTORC2 signaling in the seminal microenvironment possibly induce abnormal glucose and lipid metabolism, which impairs energy production. Oxidative stress potentially damages seminal plasma lipids and proteins, which in turn leads to impaired sperm structure and function. These findings provide evidence that the changes in seminal plasma compositions, oxidative stress, and activation of the AMPK/mTORC2 signaling contribute to the development of asthenozoospermia.
Collapse
|
7
|
Rieloff E, Skepö M. The Effect of Multisite Phosphorylation on the Conformational Properties of Intrinsically Disordered Proteins. Int J Mol Sci 2021; 22:11058. [PMID: 34681718 PMCID: PMC8541499 DOI: 10.3390/ijms222011058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Intrinsically disordered proteins are involved in many biological processes such as signaling, regulation, and recognition. A common strategy to regulate their function is through phosphorylation, as it can induce changes in conformation, dynamics, and interactions with binding partners. Although phosphorylated intrinsically disordered proteins have received increased attention in recent years, a full understanding of the conformational and structural implications of phosphorylation has not yet been achieved. Here, we present all-atom molecular dynamics simulations of five disordered peptides originated from tau, statherin, and β-casein, in both phosphorylated and non-phosphorylated state, to compare changes in global dimensions and structural elements, in an attempt to gain more insight into the controlling factors. The changes are in qualitative agreement with experimental data, and we observe that the net charge is not enough to predict the impact of phosphorylation on the global dimensions. Instead, the distribution of phosphorylated and positively charged residues throughout the sequence has great impact due to the formation of salt bridges. In statherin, a preference for arginine-phosphoserine interaction over arginine-tyrosine accounts for a global expansion, despite a local contraction of the phosphorylated region, which implies that also non-charged residues can influence the effect of phosphorylation.
Collapse
Affiliation(s)
- Ellen Rieloff
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden;
| | - Marie Skepö
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden;
- LINXS—Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, SE-223 70 Lund, Sweden
| |
Collapse
|