1
|
Liu S, Gao M, Zhang X, Wei J, Cui H. FOXP2 overexpression upregulates LAMA4 expression and thereby alleviates preeclampsia by regulating trophoblast behavior. Commun Biol 2024; 7:1427. [PMID: 39487340 PMCID: PMC11530449 DOI: 10.1038/s42003-024-07149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
Preeclampsia (PE) is a common pregnancy disorder characterized by hypertension and proteinuria. Trophoblast behavior severely affect PE progression. Transcription factor Forkhead box protein P2 (FOXP2) was involved in cell migration and invasion, but its role in PE progression remains unknown. Laminin subunit alpha 4 (LAMA4) was predicted as a downstream gene of FOXP2 and related to PE. Thus, we supposed that FOXP2 might regulate PE by regulating LAMA4. We found the decreased FOXP2 expression in patients with PE compared with healthy pregnant women. The rat model of PE was induced by L-NAME oral gavage. FOXP2 overexpression lowered systolic and diastolic blood pressure and restored pathological changes of rats with PE. Trophoblasts under the hypoxia/reoxygenation (H/R) treatment were used to mimic PE in vitro. The results revealed that FOXP2 overexpression inhibited apoptosis but promoted migration, invasion, and angiogenesis of H/R-treated trophoblasts. Dual luciferase and chromatin immunoprecipitation-polymerase chain reaction assays confirmed that FOXP2 transcriptionally upregulated the LAMA4 expression in trophoblasts. LAMA4 knockdown reversed the migration and invasion-promoting role of FOXP2 overexpression in trophoblasts with H/R treatment. Collectively, our findings suggest that the FOXP2/LAMA4 axis regulates PE by suppressing trophoblast apoptosis and promoting its migration, invasion, and angiogenesis.
Collapse
Affiliation(s)
- Sishi Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China
| | - Man Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China
| | - Xue Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China
| | - Jun Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China
| | - Hong Cui
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
2
|
Pinto-Souza CC, Kaihara JNS, Nunes PR, Mastella MH, Rossini BC, Cavecci-Mendonça B, Cavalli RDC, dos Santos LD, Sandrim VC. Different Proteomic Profiles Regarding Antihypertensive Therapy in Preeclampsia Pregnant. Int J Mol Sci 2024; 25:8738. [PMID: 39201423 PMCID: PMC11354552 DOI: 10.3390/ijms25168738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive pregnancy syndrome associated with target organ damage and increased cardiovascular risks, necessitating antihypertensive therapy. However, approximately 40% of patients are nonresponsive to treatment, which results in worse clinical outcomes. This study aimed to compare circulating proteomic profiles and identify differentially expressed proteins among 10 responsive (R-PE), 10 nonresponsive (NR-PE) patients, and 10 healthy pregnant controls (HP). We also explored correlations between these proteins and clinical data. Plasma protein relative quantification was performed using mass spectrometry, followed by bioinformatics analyses with the UniProt database, PatternLab for Proteomics 4.0, and MetaboAnalyst software (version 6.0). Considering a fold change of 1.5, four proteins were differentially expressed between NR-PE and R-PE: one upregulated (fibronectin) and three downregulated (pregnancy-specific beta-1-glycoprotein 1, complement C4B, and complement C4A). Between NR-PE and HP, six proteins were differentially expressed: two upregulated (clusterin and plasmin heavy chain A) and four downregulated (apolipoprotein L1, heparin cofactor II, complement C4B, and haptoglobin-related protein). Three proteins were differentially expressed between R-PE and HP: one downregulated (transthyretin) and two upregulated (apolipoprotein C1 and hemoglobin subunit beta). These findings suggest a complex interplay of these proteins involved in inflammatory, immune, and metabolic processes with antihypertensive therapy responsiveness and PE pathophysiology.
Collapse
Affiliation(s)
- Caroline C. Pinto-Souza
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (C.C.P.-S.); (J.N.S.K.); (P.R.N.); (M.H.M.)
| | - Julyane N. S. Kaihara
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (C.C.P.-S.); (J.N.S.K.); (P.R.N.); (M.H.M.)
| | - Priscila R. Nunes
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (C.C.P.-S.); (J.N.S.K.); (P.R.N.); (M.H.M.)
| | - Moises H. Mastella
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (C.C.P.-S.); (J.N.S.K.); (P.R.N.); (M.H.M.)
| | - Bruno C. Rossini
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (B.C.R.); (B.C.-M.); (L.D.d.S.)
| | - Bruna Cavecci-Mendonça
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (B.C.R.); (B.C.-M.); (L.D.d.S.)
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu 18619-002, SP, Brazil
| | - Ricardo de Carvalho Cavalli
- Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto 14049-900, SP, Brazil;
| | - Lucilene D. dos Santos
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (B.C.R.); (B.C.-M.); (L.D.d.S.)
| | - Valeria C. Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (C.C.P.-S.); (J.N.S.K.); (P.R.N.); (M.H.M.)
| |
Collapse
|
3
|
Yu Z, Yu T, Li X, Lin W, Li X, Zhai M, Yin J, Zhao L, Liu X, Zhao B, Duan C, Cheng H, Wang F, Wei Z, Yang Y. Cadmium exposure activates mitophagy through downregulating thyroid hormone receptor/PGC1α signal in preeclampsia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116259. [PMID: 38581905 DOI: 10.1016/j.ecoenv.2024.116259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Gestational cadmium exposure increases the risk of preeclampsia. Placenta mitophagy was activated in preeclampsia. The aim of present study was to explore the mechanism of cadmium-induced mitophagy activation and its association with preeclampsia. Mitophagy markers expression levels were detected by quantitative real-time PCR, Western blot, immunofluorescence and immunochemistry in preeclampsia placenta. JEG3 cells were treated with CdCl2, iopanoic acid (IOP), 3-methyladenine and PGC1α SiRNA to verify mechanism of cadmium-induced mitophagy. Mitophagy marker LC3BII/I and P62 expression were increased and mitochondrial membrane receptor protein TOM20 and FUNDC1 expression were decreased in preeclampsia placenta as compared with that in normotension control. Mitophagy marker LC3BII/I and P62 expression were increased and TOM20 and FUNDC1 expression was decreased in CdCl2-treated JEG3 cells. Meanwhile, mitochondrial biogenesis regulator, PGC1α expression was decreased in preeclampsia and CdCl2-treated JEG3 cells. The expressions of LC3B and P62 were increased and the expressions of TOM20, FUNDC1 and PGC1α were decreased in IOP-treated cell. PGC1α SiRNA transfection led to increased expression of LC3BII/I and P62 and decreased expression of TOM20 and FUNDC1. The expression of sFlt1 was increased in preeclampsia placenta, CdCl2-treated cells, in IOP-treated cells and in PGC1α SiRNA transfected cells. 3-methyladenine treatment protected the increased expression of sFlt1 in CdCl2-treated cells, in IOP-treated cells and in PGC1α SiRNA transfected cells. Meanwhile, co-treatment of cadmium and IOP or PGC1αSiRNA led to a reduce expressions of OPA1, MFN1, MFN2 and FUNDC1 as compared to cadmium-treated, IOP-treated and PGC1α SiRNA-treated cells. These results elucidated that maternal cadmium exposure activated placenta mitophagy through downregulation of thyroid hormone receptor signal mediated decreased expression of PGC1α and was associated with the occurrence of preeclampsia.
Collapse
Affiliation(s)
- Zhen Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Tao Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xuan Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Weilong Lin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xuemeng Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Muxin Zhai
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jiancai Yin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Li Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Baojing Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Cancan Duan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Huiru Cheng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Fen Wang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui25 Medical University, Hefei 230032, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Yuanyuan Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
4
|
Chen H, Chen Y, Zheng Q. The regulated cell death at the maternal-fetal interface: beneficial or detrimental? Cell Death Discov 2024; 10:100. [PMID: 38409106 PMCID: PMC10897449 DOI: 10.1038/s41420-024-01867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Regulated cell death (RCD) plays a fundamental role in placental development and tissue homeostasis. Placental development relies upon effective implantation and invasion of the maternal decidua by the trophoblast and an immune tolerant environment maintained by various cells at the maternal-fetal interface. Although cell death in the placenta can affect fetal development and even cause pregnancy-related diseases, accumulating evidence has revealed that several regulated cell death were found at the maternal-fetal interface under physiological or pathological conditions, the exact types of cell death and the precise molecular mechanisms remain elusive. In this review, we summarized the apoptosis, necroptosis and autophagy play both promoting and inhibiting roles in the differentiation, invasion of trophoblast, remodeling of the uterine spiral artery and decidualization, whereas ferroptosis and pyroptosis have adverse effects. RCD serves as a mode of communication between different cells to better maintain the maternal-fetal interface microenvironment. Maintaining the balance of RCD at the maternal-fetal interface is of utmost importance for the development of the placenta, establishment of an immune microenvironment, and prevention of pregnancy disorders. In addition, we also revealed an association between abnormal expression of key molecules in different types of RCD and pregnancy-related diseases, which may yield significant insights into the pathogenesis and treatment of pregnancy-related complications.
Collapse
Affiliation(s)
- Huan Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China
| | - Yin Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China
| | - Qingliang Zheng
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China.
| |
Collapse
|
5
|
Sun J, Yu M, Du W, Zhu S, Chen Z, Tao J, Zhou Y, Chen Q, Zhao Y, Zhang Q. The cGAS-STING pathway promotes the development of preeclampsia by upregulating autophagy: Mechanisms and implications. Int Immunopharmacol 2024; 128:111531. [PMID: 38281338 DOI: 10.1016/j.intimp.2024.111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
OBJECTIVE To investigate the influence and significance of cGAS-STING signaling pathway and autophagy on the occurrence and development of preeclampsia. DESIGN A case-control experimental study, in vitro cell culture study, and in vivo animal research. METHODS Human placenta tissue was collected and the differences in HE staining were observed. Immunohistochemistry and Western blot were used to verify differences in cGAS, STING and autophagy associated proteins. The PE rat model was established, the pathological changes of placenta and kidney were observed by HE staining, and the expression levels of related proteins were detected. In the lv-STING transfected HTR-8/SVneo trophoblast cell model, the expressions of autophagy indexes such as P62 and LC3 were verified by RT-PCR, Western blot and cell fluorescence experiments, and then the invasion and migration ability of cells were detected by Transwell and scrape tests. As an effective STING antagonist, C176 was administered to PE rats to observe whether it was effective in the treatment of PE disease. RESULTS The expression levels of cGAS, STING and autophagy related proteins were increased in human and rat placental tissues. In the HTR-8/SVneo cell model which transfected by lv-STING, the expression levels of autophagy related indicators such as P62 and LC3 were increased. The invasion and migration ability of HTR-8/SVneo cells were significantly inhibited, which was improved by the autophagy inhibitor chloroquine. Acting as an effective STING antagonist in vivo, C176 significantly reversed the outcome of PE, alleviated and prevented the occurrence and development of PE. CONCLUSION Our study proved that the cGAS-STING signaling pathway and autophagy levels are elevated in preeclampsia disease, and the cGAS-STING signaling pathway promotes the occurrence and development of preeclampsia through up-regulation of autophagy. This finding provides new insights into the pathogenesis of preeclampsia. Targeting this pathway may provide a potential therapeutic strategy for the treatment of preeclampsia.
Collapse
Affiliation(s)
- Jindan Sun
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Zhejiang 325000, Wenzhou, China
| | - Mengqi Yu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Zhejiang 325000, Wenzhou, China
| | - Wenzhuo Du
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Zhejiang 325000, Wenzhou, China
| | - Sennan Zhu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Zhejiang 325000, Wenzhou, China; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Wenzhou Medical University and Ruian People's Hospital, Wenzhou, Zhejiang 325000, China
| | - Ziqi Chen
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Zhejiang 325000, Wenzhou, China
| | - Jiayu Tao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Zhejiang 325000, Wenzhou, China
| | - Yi Zhou
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Zhejiang 325000, Wenzhou, China
| | - Qiuyu Chen
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Zhejiang 325000, Wenzhou, China; Yueqing People's Hospital, Wenzhou, Zhejiang 325000, China
| | - Yu Zhao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Qiong Zhang
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
6
|
Xu S, Luo W, Zhu M, Zhao L, Gao L, Liang H, Zhang Z, Yang F. Human Serum Albumin-Platinum(II) Agent Nanoparticles Inhibit Tumor Growth Through Multimodal Action Against the Tumor Microenvironment. Mol Pharm 2024; 21:346-357. [PMID: 38015620 DOI: 10.1021/acs.molpharmaceut.3c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
To overcome the limitations of traditional platinum (Pt)-based drugs and further improve the targeting ability and therapeutic efficacy in vivo, we proposed to design a human serum albumin (HSA)-Pt agent complex nanoparticle (NP) for cancer treatment by multimodal action against the tumor microenvironment. We not only synthesized a series of Pt(II) di-2-pyridone thiosemicarbazone compounds and obtained a Pt(II) agent [Pt(Dp44mT)Cl] with significant anticancer activity but also successfully constructed a novel HSA-Pt(Dp44mT) complex nanoparticle delivery system. The structure of the HSA-Pt(Dp44mT) complex revealed that Pt(Dp44mT)Cl binds to the IIA subdomain of HSA and coordinates with His-242. The HSA-His242-Pt-Dp44mT NPs had an obvious effect on the inhibition of tumor growth, which was superior to that of Dp44mT and Pt(Dp44mT)Cl, and they had almost no toxicity. In addition, the HSA-His242-Pt-Dp44mT NPs were found to kill cancer cells by inducing apoptosis, autophagy, and inhibiting angiogenesis.
Collapse
Affiliation(s)
- Shihang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Weicong Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Lei Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Lijuan Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
7
|
Kaur L, Sundrani D, Dave K, Randhir K, Mehendale S, Bayyana S, Kalyanaraman K, Chandak GR, Joshi S. Hypoxia Inducible Factors (HIF1α and HIF3α) are differentially methylated in preeclampsia placentae and are associated with birth outcomes. Mol Cell Biochem 2023; 478:2309-2318. [PMID: 36708442 DOI: 10.1007/s11010-023-04661-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/09/2023] [Indexed: 01/29/2023]
Abstract
Preeclampsia is a placental vascular pathology and hypoxia is known to influence placental angiogenesis. Hypoxia Inducible Factors (HIF1α and HIF3α) mediate the response to cellular oxygen concentration and bind to hypoxia response element of target genes. However the mechanism regulating above activity is not well-understood. We investigated if placental DNA methylation (DNAm) and expression of HIF1α and 3α genes are altered and associated with pre-eclampsia, placental weight and birth outcomes. Using a cohort comprising women with preeclampsia [N = 100, delivering at term (N = 43) and preterm (N = 57)] and normotensive controls (N = 100), we analysed DNAm in HIF1α and 3α, and their mRNA expression in placentae, employing pyrosequencing and quantitative real-time PCR, respectively. We observed significant hypermethylation at cg22891070 of HIF3α in preeclampsia placentae compared to controls (β = 1.5%, p = 0.04). CpG8 in the promoter region of HIF1α, showed marginally significant hypomethylation in preterm preeclampsia compared to controls (β = - 0.15%, p = 0.055). HIF1α expression was significantly lower in preterm preeclampsia compared to controls (mean ± SE = 10.16 ± 2.00 vs 4.25 ± 0.90, p = 0.04). Further, DNAm in HIF1α promoter region was negatively associated with its expression levels (β = - 0.165, p = 0.024). Several CpGs in HIF1α were negatively associated with placental weight and birth outcomes including birth weight (β range = - 0.224-0.300) and birth length [β range = - 0.248 to - 0.301 (p < 0.05 for all)]. Overall, we demonstrate altered DNAm in HIF1α and HIF3α in preeclampsia placentae, also associated with various birth outcomes. Correlation of DNAm in HIF1α and its expression suggests a possible role in the pathogenesis of pre-eclampsia. Further investigations on interactions between HIF1α and HIF3α in preeclampsia would be interesting.
Collapse
Affiliation(s)
- Lovejeet Kaur
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India
- Maternal and Child Health (MCH), Translational Health Science and Technology Institute (THSTI), Faridabad, 121001, India
| | - Deepali Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune Satara Road, Pune, 411043, India
| | - Kinjal Dave
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune Satara Road, Pune, 411043, India
| | - Karuna Randhir
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune Satara Road, Pune, 411043, India
| | - Savita Mehendale
- Department of Gynecology and Obstetrics, Bharati Vidyapeeth Medical College and Hospital, Pune, 411043, India
| | - Swati Bayyana
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India
| | - Kumaran Kalyanaraman
- CSI Epidemiology Research Unit, Holdsworth Memorial Hospital, Mysore, India
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India.
| | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune Satara Road, Pune, 411043, India.
| |
Collapse
|
8
|
Hao W, Zhao C, Li G, Wang H, Li T, Yan P, Wei S. Blue LED light induces cytotoxicity via ROS production and mitochondrial damage in bovine subcutaneous preadipocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121195. [PMID: 36736558 DOI: 10.1016/j.envpol.2023.121195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The purpose of this study was to investigate the effect and mechanism of blue light irradiation on bovine subcutaneous preadipocytes. In this study, preadipocytes were divided into dark group (control) and blue light group. Results show that blue light exposure time-dependently reduced the viability of preadipocytes and induced mitochondrial damage, in accompaniment with the accumulation of intracellular reactive oxygen species (ROS). Meanwhile, blue light caused oxidative stress, as evidenced by the increased MDA level, the reduced T-AOC contents, as well as the decreased activities of antioxidant enzymes. Additionally, blue light treatment induced apoptosis and G2/M phase arrest via Bcl-2/Bax/cleaved caspase-3 pathway and P53/GADD45 pathway, respectively. Protein expressions of LC3-II/LC3-I and P62 were up-regulated under blue light exposure, indicating blue light initiated autophagy but impeded autophagic degradation. Moreover, blue light caused an increase in the secretion of pro-inflammatory factors (TNF-α, IL-1β, and IL-6). Pretreatment with N-acetylcysteine (NAC), a potent ROS scavenger, restored the loss of mitochondrial membrane potential (Δψ) and reduced excess ROS. Additionally, the above negative effects of blue light on cells were alleviated after NAC administration. In conclusion, this study demonstrates blue light induces cellular ROS overproduction and Δψ depolarization, resulting in the decrease of cell viability and the activation of apoptosis, autophagy, and inflammation, providing a reference for the application of blue light in the regulation of fat cells in the future.
Collapse
Affiliation(s)
- Weiguang Hao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chongchong Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Guowen Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hongzhuang Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Tingting Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Peishi Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shengjuan Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
9
|
Luo Q, Tian Y, Qu G, Huang K, Hu P, Li L, Luo S. MiR-141-3p promotes hypoxia-induced autophagy in human placental trophoblast cells. Reprod Biol 2023; 23:100712. [PMID: 36427432 DOI: 10.1016/j.repbio.2022.100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/23/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
Preeclampsia (PE) is a pregnancy-specific disorder and a significant contributor to maternal, fetal and neonatal morbidity and mortality worldwide. Its pathogenesis is generally accepted as insufficient trophoblast invasion of the maternal endometrium and inadequate remodeling of the maternal spiral arteries. These impairments lead to elevated levels of hypoxia and oxidative stress. Autophagy has become a highly researched field in obstetrics, and this process may be essential for preimplantation development beyond the four- and eight-cell stages, and for blastocyst survival, extra-villous trophoblast functions, invasion and vascular remodeling. Several studies have shown that autophagy activation, shown by an increase in autophagy vacuoles or microtubule-associated protein 1 A/1B-light chain 3 (LC3) dots, was more common in PE than in normal pregnancy. Thus, changes in autophagic status are seen in preeclamptic placentas. MicroRNA-141-3p (miR-141-3p), a multifunctional miRNA, is involved in a variety of physiological and pathological processes, including PE and autophagy. However, the influence of miR-141-3p on autophagy regulation in trophoblast cells has yet to be described. Therefore, the objective of our study was to investigate the role of miR-141-3p in autophagy induced by hypoxia in human placental trophoblast cells. Our results found that hypoxia induced autophagy in trophoblast cells and dramatically elevated the expression of miR-141-3p. Overexpression of miR-141-3p improved autophagic activity, whereas low expression of miR-141-3p inhibited autophagic activity. Therefore, our data demonstrated that miR-141-3p promoted hypoxia-induced autophagy in placental trophoblast cells, which may be related to the development of preeclampsia.
Collapse
Affiliation(s)
- Qiqi Luo
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Yu Tian
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Guangjin Qu
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Kun Huang
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Panpan Hu
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Lianghai Li
- Dianjiang County People's Hospital, Chongqing 408300, PR China
| | - Shanshun Luo
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
| |
Collapse
|
10
|
A novel sprayable thermosensitive hydrogel coupled with zinc modified metformin promotes the healing of skin wound. Bioact Mater 2023; 20:610-626. [PMID: 35846848 PMCID: PMC9256661 DOI: 10.1016/j.bioactmat.2022.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/16/2022] Open
Abstract
A novel sprayable adhesive is established (ZnMet-PF127) by the combination of a thermosensitive hydrogel (Pluronic F127, PF127) and a coordination complex of zinc and metformin (ZnMet). Here we demonstrate that ZnMet-PF127 potently promotes the healing of traumatic skin defect and burn skin injury by promoting cell proliferation, angiogenesis, collagen formation. Furthermore, we find that ZnMet could inhibit reactive oxygen species (ROS) production through activation of autophagy, thereby protecting cell from oxidative stress induced damage and promoting healing of skin wound. ZnMet complex exerts better effects on promoting skin wound healing than ZnCl2 or metformin alone. ZnMet complex also displays excellent antibacterial activity against Staphylococcus aureus or Escherichia coli, which could reduce the incidence of skin wound infections. Collectively, we demonstrate that sprayable PF127 could be used as a new drug delivery system for treatment of skin injury. The advantages of this sprayable system are obvious: (1) It is convenient to use; (2) The hydrogel can cover irregular skin defect sites evenly in a liquid state. In combination with this system, we establish a novel sprayable adhesive (ZnMet-PF127) and demonstrate that it is a potential clinical treatment for traumatic skin defect and burn skin injury.
Collapse
|
11
|
Hayder H, Shan Y, Chen Y, O’Brien JA, Peng C. Role of microRNAs in trophoblast invasion and spiral artery remodeling: Implications for preeclampsia. Front Cell Dev Biol 2022; 10:995462. [PMID: 36263015 PMCID: PMC9575991 DOI: 10.3389/fcell.2022.995462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
It is now well-established that microRNAs (miRNAs) are important regulators of gene expression. The role of miRNAs in placental development and trophoblast function is constantly expanding. Trophoblast invasion and their ability to remodel uterine spiral arteries are essential for proper placental development and successful pregnancy outcome. Many miRNAs are reported to be dysregulated in pregnancy complications, especially preeclampsia and they exert various regulatory effects on trophoblasts. In this review, we provide a brief overview of miRNA biogenesis and their mechanism of action, as well as of trophoblasts differentiation, invasion and spiral artery remodeling. We then discuss the role of miRNAs in trophoblasts invasion and spiral artery remodeling, focusing on miRNAs that have been thoroughly investigated, especially using multiple model systems. We also discuss the potential role of miRNAs in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Heyam Hayder
- Department of Biology, York University, Toronto, ON, Canada
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | - Yan Chen
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng,
| |
Collapse
|
12
|
Triki H, Declerck K, Charfi S, Ben Kridis W, Chaabane K, Ben Halima S, Sellami T, Rebai A, Berghe WV, Cherif B. Immune checkpoint CD155 promoter methylation profiling reveals cancer-associated behaviors within breast neoplasia. Cancer Immunol Immunother 2021; 71:1139-1155. [PMID: 34608548 DOI: 10.1007/s00262-021-03064-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND CD155 immune checkpoint has recently emerged as a compelling immunotherapeutic target. Epigenetic DNA methylation changes are recognized as key molecular mechanisms in cancer development. Hence, the identification of methylation markers that are sensitive and specific for breast cancer may improve early detection and predict prognosis. We speculate that CD155 promoter methylation can be a valuable epigenetic biomarker, based upon strong indications for its immunoregulatory functions. METHODS Methylation analyses were conducted on 14 CpGs sites in the CD155 promoter region by bisulfite pyrosequencing. To elucidate the related gene expression changes, a transcriptional study using RT-qPCR was performed. Statistical analyses were performed to evaluate correlations of CD155 methylation profiles with mRNA expression together with clinical-pathological features, prognosis and immune infiltrate. RESULTS CD155 promoter methylation profile was significantly associated with SBR grade, tumor size, molecular subgroups, HER2 and hormonal receptors expression status. Low CD155 methylation rates correlated with better prognosis in univariate cox proportional hazard analysis and appeared as an independent survival predictor in cox-regression multivariate analysis. Further, methylation changes at CD155 specific CpG sites were consistent with CD155 membranous mRNA isoform expression status. Statistical analyses also showed a significant association with immune Natural Killer cell infiltrate when looking at the CpG7, CpG8, CpG9 and CpG11 sites. CONCLUSION Altogether, our results contribute to a better understanding of the impact of CD155 immune checkpoint modality expression in breast tumors, revealing for the first time that specific CpG sites from CD155 promoter may be a potential biomarker in breast cancer monitoring.
Collapse
Affiliation(s)
- Hana Triki
- Laboratory of Molecular and Cellular Screening Processes, Centre de Biotechnologie de Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalizedand Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Slim Charfi
- Department of Pathology, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Wala Ben Kridis
- Department of Medical Oncology, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Kais Chaabane
- Department of Gynecology, University Hospital Hédi Chaker, Sfax, Tunisia
| | - Sawssan Ben Halima
- Department of Gynecology, University Hospital Hédi Chaker, Sfax, Tunisia
| | - Tahya Sellami
- Department of Pathology, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Centre de Biotechnologie de Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalizedand Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Boutheina Cherif
- Laboratory of Molecular and Cellular Screening Processes, Centre de Biotechnologie de Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia.
| |
Collapse
|