1
|
Chen J, He Y, Chen L, Wu T, Yang G, Luo H, Hu S, Yin S, Qian Y, Miao H, Li N, Miao C, Feng R. Differential alternative splicing landscape identifies potentially functional RNA binding proteins in early embryonic development in mammals. iScience 2024; 27:109104. [PMID: 38433915 PMCID: PMC10904927 DOI: 10.1016/j.isci.2024.109104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 11/16/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Alternative splicing (AS) as one of the important post-transcriptional regulatory mechanisms has been poorly studied during embryogenesis. In this study, we comprehensively collected and analyzed the transcriptome data of early embryos from human and mouse. We found that AS plays an important role in this process and predicted candidate RNA binding protein (RBP) regulators that are associated with reproductive development. The predicted RBPs such as EIF4A3, MAK16, SRSF2, and UTP23 were found to be associated with reproductive disorders. By Smart-seq2 sequencing analysis, we identified 5445 aberrant alternative splicing events in Eif4a3-knockdown embryos. These events were preferentially associated with RNA processing. In conclusion, our work on the landscape and potential function of alternative splicing events will boost further investigation of detailed mechanisms and key factors regulating mammalian early embryo development and promote the inspiration of pharmaceutical approaches for disorders in this crucial biology process.
Collapse
Affiliation(s)
- Jianhua Chen
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yanni He
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Liangliang Chen
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tian Wu
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Guangping Yang
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hui Luo
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Saifei Hu
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Siyue Yin
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yun Qian
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Hui Miao
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Changzhi, Shanxi 046000, China
| | - Na Li
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Changzhi, Shanxi 046000, China
| | - Congxiu Miao
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Changzhi, Shanxi 046000, China
| | - Ruizhi Feng
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| |
Collapse
|
2
|
Sananmuang T, Puthier D, Nguyen C, Chokeshaiusaha K. Differential transcript usage across mammalian oocytes at the germinal vesicle and metaphase II stages. Theriogenology 2024; 215:1-9. [PMID: 37995439 DOI: 10.1016/j.theriogenology.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Ongoing progress in mRNA-Sequencing technologies has significantly contributed to the refinement of assisted reproductive technologies. However, the prior investigations have predominantly concentrated on alterations in overall gene expression levels, thereby leaving a considerable gap in our understanding of the influence of transcript isoform expression on fundamental cellular mechanisms of oocytes. Given the efficacy of differential transcript usage (DTU) analysis to address such knowledge, we conducted comprehensive DTU analysis utilizing mRNA-Seq datasets of germinal vesicle (GV) and metaphase II (MII) oocytes across six mammalian species from the SRA database, including cow, donkey, horse, human, mouse, and pig. To further illuminate the roles of these genes, we also conducted a rigorous Gene Ontology (GO) term enrichment analysis. While the DTU analysis of each species exhibited several genes with alterations in their transcript isoform usage, referred to as DTU genes, this study focused on only ten cross-species DTU genes sharing among a minimum of five distinct species (FDR≤0.05). These cross-species DTU genes were as follows: ABCF1, CDC6, CFAP36, CNOT10, DNM3, IWS1, NBN, NDEL1, RAD50 and ZCCHC17. GO term enrichment analysis unveiled the alignment of these cross-species DTU gene functions with RNA and cell-cycle control mechanisms across diverse mammalian species, thereby suggesting their vital roles during oocyte maturation. Further exploration of the transcript isoforms of these genes hence bore the potential to uncover novel transcript isoform markers for future reproductive technologies in both human and animal contexts.
Collapse
Affiliation(s)
- Thanida Sananmuang
- Rajamangala University of Technology Tawan-OK, Faculty of Veterinary Medicine, Chonburi, Thailand
| | - Denis Puthier
- Aix-Marseille Université, INSERM UMR 1090, TAGC, Marseille, France
| | - Catherine Nguyen
- Aix-Marseille Université, INSERM UMR 1090, TAGC, Marseille, France
| | - Kaj Chokeshaiusaha
- Rajamangala University of Technology Tawan-OK, Faculty of Veterinary Medicine, Chonburi, Thailand.
| |
Collapse
|
3
|
Ermisch AF, Wood JR. Regulation of Oocyte mRNA Metabolism: A Key Determinant of Oocyte Developmental Competence. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:23-46. [PMID: 39030353 DOI: 10.1007/978-3-031-55163-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The regulation of mRNA transcription and translation is uncoupled during oogenesis. The reason for this uncoupling is two-fold. Chromatin is only accessible to the transcriptional machinery during the growth phase as it condenses prior to resumption of meiosis to ensure faithful segregation of chromosomes during meiotic maturation. Thus, transcription rates are high during this time period in order to produce all of the transcripts needed for meiosis, fertilization, and embryo cleavage until the newly formed embryonic genome becomes transcriptionally active. To ensure appropriate timing of key developmental milestones including chromatin condensation, resumption of meiosis, segregation of chromosomes, and polar body extrusion, the translation of protein from transcripts synthesized during oocyte growth must be temporally regulated. This is achieved by the regulation of mRNA interaction with RNA binding proteins and shortening and lengthening of the poly(A) tail. This chapter details the essential factors that regulate the dynamic changes in mRNA synthesis, storage, translation, and degradation during oocyte growth and maturation.
Collapse
Affiliation(s)
- Alison F Ermisch
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jennifer R Wood
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
4
|
Su M, Pan T, Chen QZ, Zhou WW, Gong Y, Xu G, Yan HY, Li S, Shi QZ, Zhang Y, He X, Jiang CJ, Fan SC, Li X, Cairns MJ, Wang X, Li YS. Data analysis guidelines for single-cell RNA-seq in biomedical studies and clinical applications. Mil Med Res 2022; 9:68. [PMID: 36461064 PMCID: PMC9716519 DOI: 10.1186/s40779-022-00434-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
The application of single-cell RNA sequencing (scRNA-seq) in biomedical research has advanced our understanding of the pathogenesis of disease and provided valuable insights into new diagnostic and therapeutic strategies. With the expansion of capacity for high-throughput scRNA-seq, including clinical samples, the analysis of these huge volumes of data has become a daunting prospect for researchers entering this field. Here, we review the workflow for typical scRNA-seq data analysis, covering raw data processing and quality control, basic data analysis applicable for almost all scRNA-seq data sets, and advanced data analysis that should be tailored to specific scientific questions. While summarizing the current methods for each analysis step, we also provide an online repository of software and wrapped-up scripts to support the implementation. Recommendations and caveats are pointed out for some specific analysis tasks and approaches. We hope this resource will be helpful to researchers engaging with scRNA-seq, in particular for emerging clinical applications.
Collapse
Affiliation(s)
- Min Su
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166 China
| | - Tao Pan
- College of Biomedical Information and Engineering, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199 Hainan China
| | - Qiu-Zhen Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166 China
| | - Wei-Wei Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081 Heilongjiang China
| | - Yi Gong
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166 China
- Department of Immunology, Nanjing Medical University, Nanjing, 211166 China
| | - Gang Xu
- College of Biomedical Information and Engineering, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199 Hainan China
| | - Huan-Yu Yan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166 China
| | - Si Li
- College of Biomedical Information and Engineering, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199 Hainan China
| | - Qiao-Zhen Shi
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166 China
| | - Ya Zhang
- College of Biomedical Information and Engineering, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199 Hainan China
| | - Xiao He
- Department of Laboratory Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, 401174 China
| | | | - Shi-Cai Fan
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110 Guangdong China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081 Heilongjiang China
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, the University of Newcastle, University Drive, Callaghan, NSW 2308 Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305 Australia
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166 China
| | - Yong-Sheng Li
- College of Biomedical Information and Engineering, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199 Hainan China
| |
Collapse
|
5
|
Liu R, Yun Y, Shu W, Wang X, Luo M. Editorial: Reproductive genomics. Front Genet 2022; 13:1002458. [PMID: 36081991 PMCID: PMC9445836 DOI: 10.3389/fgene.2022.1002458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rong Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Human Histology and Embryology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
- *Correspondence: Rong Liu, ; Xi Wang, ; Mengcheng Luo,
| | - Yan Yun
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, United States
| | - Wenjie Shu
- Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Rong Liu, ; Xi Wang, ; Mengcheng Luo,
| | - Mengcheng Luo
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Human Histology and Embryology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
- *Correspondence: Rong Liu, ; Xi Wang, ; Mengcheng Luo,
| |
Collapse
|