1
|
Šťastný D, Balleková A, Tahotná D, Pokorná L, Holič R, Humpolíčková J, Griač P. Characterization of two Plasmodium falciparum lipid transfer proteins of the Sec14/CRAL-TRIO family. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159572. [PMID: 39426587 DOI: 10.1016/j.bbalip.2024.159572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Invasion of human red blood cells by the malaria parasite Plasmodium falciparum is followed by dramatic modifications of erythrocytes properties, including de novo formation of new membrane systems. Lipid transfer proteins from both the parasite and the host cell are most likely an important part of those membrane remodeling processes. Using bioinformatics and in silico structural analysis, we have identified five P. falciparum potential lipid transfer proteins containing cellular retinaldehyde binding - triple functional domain (CRAL-TRIO). Two of these proteins, C6KTD4, encoded by the PF3D7_0629900 gene and Q8II87, encoded by the PF3D7_1127600 gene, were studied in more detail. In vitro lipid transfer assays using recombinant C6KTD4 and Q8II87 confirmed that these proteins are indeed bona fide lipid transfer proteins. C6KTD4 transfers sterols, phosphatidylinositol 4,5 bisphosphate, and, to some degree, also phosphatidylcholine between two membrane compartments. Q8II87 possesses phosphatidylserine transfer activity in vitro. In the yeast model, the expression of P. falciparumQ8II87 protein partially complements the absence of Sec14p and its closest homologue, Sfh1p. C6KTD4 protein can substitute for the collective essential function of oxysterol-binding related proteins. According to published whole genome studies in P. falciparum, absence of C6KTD4 and Q8II87 proteins has severe consequences for parasite viability. Therefore, CRAL-TRIO lipid transfer proteins of P. falciparum are potential targets of novel antimalarials, in search for which the yeast model expressing these proteins could be a valuable tool.
Collapse
Affiliation(s)
- Dominik Šťastný
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Alena Balleková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Dana Tahotná
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Lucia Pokorná
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Roman Holič
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Jana Humpolíčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Peter Griač
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia.
| |
Collapse
|
2
|
Hamaï A, Drin G. Specificity of lipid transfer proteins: An in vitro story. Biochimie 2024; 227:85-110. [PMID: 39304019 DOI: 10.1016/j.biochi.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Lipids, which are highly diverse, are finely distributed between organelle membranes and the plasma membrane (PM) of eukaryotic cells. As a result, each compartment has its own lipid composition and molecular identity, which is essential for the functional fate of many proteins. This distribution of lipids depends on two main processes: lipid synthesis, which takes place in different subcellular regions, and the transfer of these lipids between and across membranes. This review will discuss the proteins that carry lipids throughout the cytosol, called LTPs (Lipid Transfer Proteins). More than the modes of action or biological roles of these proteins, we will focus on the in vitro strategies employed during the last 60 years to address a critical question: What are the lipid ligands of these LTPs? We will describe the extent to which these strategies, combined with structural data and investigations in cells, have made it possible to discover proteins, namely ORPs, Sec14, PITPs, STARDs, Ups/PRELIs, START-like, SMP-domain containing proteins, and bridge-like LTPs, which compose some of the main eukaryotic LTP families, and their lipid ligands. We will see how these approaches have played a central role in cell biology, showing that LTPs can connect distant metabolic branches, modulate the composition of cell membranes, and even create new subcellular compartments.
Collapse
Affiliation(s)
- Amazigh Hamaï
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France
| | - Guillaume Drin
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France.
| |
Collapse
|
3
|
Ballekova A, Eisenreichova A, Różycki B, Boura E, Humpolickova J. Coordination of transporter, cargo, and membrane properties during non-vesicular lipid transport. Commun Biol 2024; 7:1585. [PMID: 39604557 PMCID: PMC11603022 DOI: 10.1038/s42003-024-07301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Homeostasis of cellular membranes is maintained by fine-tuning their lipid composition. Yeast lipid transporter Osh6, belonging to the oxysterol-binding protein-related proteins family, was found to participate in the transport of phosphatidylserine (PS). PS synthesized in the endoplasmic reticulum is delivered to the plasma membrane, where it is exchanged for phosphatidylinositol 4-phosphate (PI4P). PI4P provides the driving force for the directed PS transport against its concentration gradient. In this study, we employed an in vitro approach to reconstitute the transport process into the minimalistic system of large unilamellar vesicles to reveal its fundamental biophysical determinants. Our study draws a comprehensive portrait of the interplay between the structure and dynamics of Osh6, the carried cargo lipid, and the physical properties of the involved membranes, with particular attention to the presence of charged lipids and to membrane fluidity. Specifically, we address the role of the cargo lipid, which, by occupying the transporter, imposes changes in its dynamics and, consequently, predisposes the cargo to disembark in the correct target membrane.
Collapse
Affiliation(s)
- Alena Ballekova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia.
| | - Andrea Eisenreichova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia.
| |
Collapse
|
4
|
Doyle CP, Rectenwald A, Timple L, Hammond GRV. Orthogonal targeting of SAC1 to mitochondria implicates ORP2 as a major player in PM PI4P turnover. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.28.555163. [PMID: 37693626 PMCID: PMC10491111 DOI: 10.1101/2023.08.28.555163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Oxysterol binding protein (OSBP)-related proteins (ORPs) 5 and 8 have been shown to deplete the lipid phosphatidylinositol 4-phosphate (PI4P) at sites of membrane contact between the endoplasmic reticulum (ER) and plasma membrane (PM). This is believed to be caused by transport of PI4P from the PM to the ER, where PI4P is degraded by an ER-localized SAC1 phosphatase. This is proposed to power the anti-port of phosphatidylserine (PS) lipids from ER to PM, up their concentration gradient. Alternatively, ORPs have been proposed to sequester PI4P, dependent on the concentration of their alternative lipid ligand. Here, we aimed to distinguish these possibilities in living cells by orthogonal targeting of PI4P transfer and degradation to PM-mitochondria contact sites. Surprisingly, we found that orthogonal targeting of SAC1 to mitochondria enhanced PM PI4P turnover independent of targeting to contact sites with the PM. This turnover could be slowed by knock-down of soluble ORP2, which also has a major impact on PM PI4P levels even without SAC1 over-expression. The data reveal a role for contact site-independent modulation of PM PI4P levels and lipid antiport.
Collapse
Affiliation(s)
- Colleen P Doyle
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Andrew Rectenwald
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Liz Timple
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
5
|
Doyle CP, Rectenwald A, Timple L, Hammond GRV. Orthogonal Targeting of SAC1 to Mitochondria Implicates ORP2 as a Major Player in PM PI4P Turnover. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241229272. [PMID: 38327560 PMCID: PMC10848804 DOI: 10.1177/25152564241229272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Oxysterol-binding protein (OSBP)-related proteins (ORPs) 5 and 8 have been shown to deplete the lipid phosphatidylinositol 4-phosphate (PI4P) at sites of membrane contact between the endoplasmic reticulum (ER) and plasma membrane (PM). This is believed to be caused by transport of PI4P from the PM to the ER, where PI4P is degraded by an ER-localized SAC1 phosphatase. This is proposed to power the anti-port of phosphatidylserine (PS) lipids from ER to PM, up their concentration gradient. Alternatively, ORPs have been proposed to sequester PI4P, dependent on the concentration of their alternative lipid ligand. Here, we aimed to distinguish these possibilities in living cells by orthogonal targeting of PI4P transfer and degradation to PM-mitochondria contact sites. Surprisingly, we found that orthogonal targeting of SAC1 to mitochondria enhanced PM PI4P turnover independent of targeting to contact sites with the PM. This turnover could be slowed by knock-down of soluble ORP2, which also has a major impact on PM PI4P levels even without SAC1 over-expression. The data reveal a role for contact site-independent modulation of PM PI4P levels and lipid antiport.
Collapse
Affiliation(s)
- Colleen P. Doyle
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Andrew Rectenwald
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Liz Timple
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
6
|
Eisenreichova A, Humpolickova J, Różycki B, Boura E, Koukalova A. Effects of biophysical membrane properties on recognition of phosphatidylserine, or phosphatidylinositol 4-phosphate by lipid biosensors LactC2, or P4M. Biochimie 2023; 215:42-49. [PMID: 37683994 DOI: 10.1016/j.biochi.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Lipid biosensors are molecular tools used both in vivo and in vitro applications, capable of selectively detecting specific types of lipids in biological membranes. However, despite their extensive use, there is a lack of systematic characterization of their binding properties in various membrane conditions. The purpose of this study was to investigate the impact of membrane properties, such as fluidity and membrane charge, on the sensitivity of two lipid biosensors, LactC2 and P4M, to their target lipids, phosphatidylserine (PS) or phosphatidylinositol 4-phosphate (PI4P), respectively. Dual-color fluorescence cross-correlation spectroscopy, employed in this study, provided a useful technique to investigate interactions of these recombinant fluorescent biosensors with liposomes of varying compositions. The results of the study demonstrate that the binding of the LactC2 biosensor to low levels of PS in the membrane is highly supported by the presence of anionic lipids or membrane fluidity. However, at high PS levels, the presence of anionic lipids does not further enhance binding of LactC2. In contrast, neither membrane charge, nor membrane fluidity significantly affect the binding affinity of P4M to PI4P. These findings provide valuable insights into the role of membrane properties on the binding properties of lipid biosensors.
Collapse
Affiliation(s)
- Andrea Eisenreichova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - Alena Koukalova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic.
| |
Collapse
|
7
|
Eisenreichova A, Klima M, Anila MM, Koukalova A, Humpolickova J, Różycki B, Boura E. Crystal Structure of the ORP8 Lipid Transport ORD Domain: Model of Lipid Transport. Cells 2023; 12:1974. [PMID: 37566053 PMCID: PMC10417380 DOI: 10.3390/cells12151974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
ORPs are lipid-transport proteins belonging to the oxysterol-binding protein family. They facilitate the transfer of lipids between different intracellular membranes, such as the ER and plasma membrane. We have solved the crystal structure of the ORP8 lipid transport domain (ORD8). The ORD8 exhibited a β-barrel fold composed of anti-parallel β-strands, with three α-helices replacing β-strands on one side. This mixed alpha-beta structure was consistent with previously solved structures of ORP2 and ORP3. A large cavity (≈1860 Å3) within the barrel was identified as the lipid-binding site. Although we were not able to obtain a lipid-bound structure, we used computer simulations based on our crystal structure to dock PS and PI4P molecules into the putative lipid-binding site of the ORD8. Comparative experiments between the short ORD8ΔLid (used for crystallography) and the full-length ORD8 (lid containing) revealed the lid's importance for stable lipid binding. Fluorescence assays revealed different transport efficiencies for PS and PI4P, with the lid slowing down transport and stabilizing cargo. Coarse-grained simulations highlighted surface-exposed regions and hydrophobic interactions facilitating lipid bilayer insertion. These findings enhance our comprehension of ORD8, its structure, and lipid transport mechanisms, as well as provide a structural basis for the design of potential inhibitors.
Collapse
Affiliation(s)
- Andrea Eisenreichova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague, Czech Republic; (A.E.); (M.K.); (A.K.); (J.H.)
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague, Czech Republic; (A.E.); (M.K.); (A.K.); (J.H.)
| | - Midhun Mohan Anila
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland; (M.M.A.); (B.R.)
| | - Alena Koukalova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague, Czech Republic; (A.E.); (M.K.); (A.K.); (J.H.)
| | - Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague, Czech Republic; (A.E.); (M.K.); (A.K.); (J.H.)
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland; (M.M.A.); (B.R.)
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague, Czech Republic; (A.E.); (M.K.); (A.K.); (J.H.)
| |
Collapse
|
8
|
Subra M, Antonny B, Mesmin B. New insights into the OSBP‒VAP cycle. Curr Opin Cell Biol 2023; 82:102172. [PMID: 37245352 DOI: 10.1016/j.ceb.2023.102172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/30/2023]
Abstract
VAP-A is a major endoplasmic reticulum (ER) receptor that allows this organelle to engage numerous membrane contact sites with other organelles. One highly studied example is the formation of contact sites through VAP-A interaction with Oxysterol-binding protein (OSBP). This lipid transfer protein transports cholesterol from the ER to the trans-Golgi network owing to the counter-exchange of the phosphoinositide PI(4)P. In this review, we highlight recent studies that advance our understanding of the OSBP cycle and extend the model of lipid exchange to other cellular contexts and other physiological and pathological conditions.
Collapse
Affiliation(s)
- Mélody Subra
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, 06560, Valbonne, France
| | - Bruno Antonny
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, 06560, Valbonne, France.
| | - Bruno Mesmin
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, 06560, Valbonne, France.
| |
Collapse
|
9
|
Balla T, Gulyas G, Mandal A, Alvarez-Prats A, Niu Y, Kim YJ, Pemberton J. Roles of Phosphatidylinositol 4-Phosphorylation in Non-vesicular Cholesterol Trafficking. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:327-352. [PMID: 36988887 PMCID: PMC11135459 DOI: 10.1007/978-3-031-21547-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cholesterol (Chol) is an essential component of all eukaryotic cell membranes that affects the function of numerous peripheral as well as integral membrane proteins. Chol is synthesized in the ER, but it is selectively enriched within the plasma membrane (PM) and other endomembranes, which requires Chol to cross the aqueous phase of the cytoplasm. In addition to the classical vesicular trafficking pathways that are known to facilitate the bulk transport of membrane intermediates, Chol is also transported via non-vesicular lipid transfer proteins that work primarily within specialized membrane contact sites. Some of these transport pathways work against established concentration gradients and hence require energy. Recent studies highlight the unique role of phosphoinositides (PPIns), and phosphatidylinositol 4-phosphate (PI4P) in particular, for the control of non-vesicular Chol transport. In this chapter, we will review the emerging connection between Chol, PPIns, and lipid transfer proteins that include the important family of oxysterol-binding protein related proteins, or ORPs.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA.
| | | | - Amrita Mandal
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | | | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|