1
|
Nava M, Rowe SJ, Taylor RJ, Kahne D, Nocera DG. Determination of Initial Rates of Lipopolysaccharide Transport. Biochemistry 2024; 63:2440-2448. [PMID: 39264328 PMCID: PMC11447908 DOI: 10.1021/acs.biochem.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
Nonvesicular lipid trafficking pathways are an important process in every domain of life. The mechanisms of these processes are poorly understood in part due to the difficulty in kinetic characterization. One important class of glycolipids, lipopolysaccharides (LPS), are the primary lipidic component of the outer membrane of Gram-negative bacteria. LPS are synthesized in the inner membrane and then trafficked to the cell surface by the lipopolysaccharide transport proteins, LptB2FGCADE. By characterizing the interaction of a fluorescent probe and LPS, we establish a quantitative assay to monitor the flux of LPS between proteoliposomes on the time scale of seconds. We then incorporate photocaged ATP into this system, which allows for light-based control of the initiation of LPS transport. This control allows us to measure the initial rate of LPS transport (3.0 min-1 per LptDE). We also find that the rate of LPS transport by the Lpt complex is independent of the structure of LPS. In contrast, we find the rate of LPS transport is dependent on the proper function of the LptDE complex. Mutants of the outer membrane Lpt components, LptDE, that cause defective LPS assembly in live cells display attenuated transport rates and slower ATP hydrolysis compared to wild type proteins. Analysis of these mutants reveals that the rates of ATP hydrolysis and LPS transport are correlated such that 1.2 ± 0.2 ATP are hydrolyzed for each LPS transported. This correlation suggests a model where the outer membrane components ensure the coupling of ATP hydrolysis and LPS transport by stabilizing a transport-active state of the Lpt bridge.
Collapse
Affiliation(s)
| | | | - Rebecca J. Taylor
- Department of Chemistry and Chemical
Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical
Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical
Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Liu Q, Wu Q, Xu T, Malakar PK, Zhu Y, Liu J, Zhao Y, Zhang Z. Thanatin: A Promising Antimicrobial Peptide Targeting the Achilles' Heel of Multidrug-Resistant Bacteria. Int J Mol Sci 2024; 25:9496. [PMID: 39273441 PMCID: PMC11395501 DOI: 10.3390/ijms25179496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Antimicrobial resistance poses an escalating threat to human health, necessitating the development of novel antimicrobial agents capable of addressing challenges posed by antibiotic-resistant bacteria. Thanatin, a 21-amino acid β-hairpin insect antimicrobial peptide featuring a single disulfide bond, exhibits broad-spectrum antibacterial activity, particularly effective against multidrug-resistant strains. The outer membrane biosynthesis system is recognized as a critical vulnerability in antibiotic-resistant bacteria, which thanatin targets to exert its antimicrobial effects. This peptide holds significant promise for diverse applications. This review begins with an examination of the structure-activity relationship and synthesis methods of thanatin. Subsequently, it explores thanatin's antimicrobial activity, detailing its various mechanisms of action. Finally, it discusses prospective clinical, environmental, food, and agricultural applications of thanatin, offering valuable insights for future research endeavors.
Collapse
Affiliation(s)
- Qianhui Liu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Qian Wu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Tianming Xu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Jing Liu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| |
Collapse
|
3
|
Törk L, Moffatt CB, Bernhardt TG, Garner EC, Kahne D. Single-molecule dynamics show a transient lipopolysaccharide transport bridge. Nature 2023; 623:814-819. [PMID: 37938784 PMCID: PMC10842706 DOI: 10.1038/s41586-023-06709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/04/2023] [Indexed: 11/09/2023]
Abstract
Gram-negative bacteria are surrounded by two membranes. A special feature of the outer membrane is its asymmetry. It contains lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet1-3. The proper assembly of LPS in the outer membrane is required for cell viability and provides Gram-negative bacteria intrinsic resistance to many classes of antibiotics. LPS biosynthesis is completed in the inner membrane, so the LPS must be extracted, moved across the aqueous periplasm that separates the two membranes and translocated through the outer membrane where it assembles on the cell surface4. LPS transport and assembly requires seven conserved and essential LPS transport components5 (LptA-G). This system has been proposed to form a continuous protein bridge that provides a path for LPS to reach the cell surface6,7, but this model has not been validated in living cells. Here, using single-molecule tracking, we show that Lpt protein dynamics are consistent with the bridge model. Half of the inner membrane Lpt proteins exist in a bridge state, and bridges persist for 5-10 s, showing that their organization is highly dynamic. LPS facilitates Lpt bridge formation, suggesting a mechanism by which the production of LPS can be directly coupled to its transport. Finally, the bridge decay kinetics suggest that there may be two different types of bridges, whose stability differs according to the presence (long-lived) or absence (short-lived) of LPS. Together, our data support a model in which LPS is both a substrate and a structural component of dynamic Lpt bridges that promote outer membrane assembly.
Collapse
Affiliation(s)
- Lisa Törk
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Caitlin B Moffatt
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
4
|
Schultz KM, Schneider JR, Fischer MA, Cina NP, Riegert MO, Frank DW, Klug CS. Binding and transport of LPS occurs through the coordinated combination of an array of sites across the entire Escherichia coli LPS transport protein LptA. Protein Sci 2023; 32:e4724. [PMID: 37417889 PMCID: PMC10360375 DOI: 10.1002/pro.4724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
The outer leaflet of the outer membrane (OM) of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and other important pathogens is largely composed of lipopolysaccharide (LPS), which is essential to nearly all Gram-negative bacteria. LPS is transported to the outer leaflet of the OM through a yet unknown mechanism by seven proteins that comprise the LPS transport system. LptA, the only entirely periplasmic Lpt protein, bridges the periplasmic space between the IM LptB2 FGC and the OM LptDE complexes. LptA is postulated to protect the hydrophobic acyl chains of LPS as it crosses the hydrophilic periplasm, is essential to cell viability, and contains many conserved residues distributed across the protein. To identify which side chains are required for function of E. coli LptA in vivo, we performed a systematic, unbiased, high-throughput screen of the effect of 172 single alanine substitutions on cell viability utilizing an engineered BL21 derivative with a chromosomal knockout of the lptA gene. Remarkably, LptA is highly tolerant to amino acid substitution with alanine. Only four alanine mutants could not complement the chromosomal knockout; CD spectroscopy showed that these substitutions resulted in proteins with significantly altered secondary structure. In addition, 29 partial loss-of-function mutants were identified that led to OM permeability defects; interestingly, these sites were solely located within β-strands of the central core of the protein and each resulted in misfolding of the protein. Therefore, no single residue within LptA is responsible for LPS binding, supporting previous EPR spectroscopy data indicating that sites across the entire protein work in concert to bind and transport LPS.
Collapse
Affiliation(s)
- Kathryn M. Schultz
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - John R. Schneider
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Matthew A. Fischer
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Nicholas P. Cina
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Molly O. Riegert
- Department of Microbiology & ImmunologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Dara W. Frank
- Department of Microbiology & ImmunologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Candice S. Klug
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
5
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
6
|
Suppressor Mutations in LptF Bypass Essentiality of LptC by Forming a Six-Protein Transenvelope Bridge That Efficiently Transports Lipopolysaccharide. mBio 2023; 14:e0220222. [PMID: 36541759 PMCID: PMC9972910 DOI: 10.1128/mbio.02202-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lipopolysaccharide (LPS) is an essential component of the outer membrane (OM) of many Gram-negative bacteria, providing a barrier against the entry of toxic molecules. In Escherichia coli, LPS is exported to the cell surface by seven essential proteins (LptA-G) that form a transenvelope complex. At the inner membrane, the ATP-binding cassette (ABC) transporter LptB2FG associates with LptC to power LPS extraction from the membrane and transfer to the periplasmic LptA protein, which is in complex with the OM translocon LptDE. LptC interacts both with LptB2FG and LptADE to mediate the formation of the transenvelope bridge and regulates the ATPase activity of LptB2FG. A genetic screen has previously identified suppressor mutants at a residue (R212) of LptF that are viable in the absence of LptC. Here, we present in vivo evidence that the LptF R212G mutant assembles a six-protein transenvelope complex in which LptA mediates interactions with LptF and LptD in the absence of LptC. Furthermore, we present in vitro evidence that the mutant LptB2FG complexes restore the regulation of ATP hydrolysis as it occurs in the LptB2FGC complex to achieve wild-type efficient coupling of ATP hydrolysis and LPS movement. We also show the suppressor mutations restore the wild-type levels of LPS transport both in vivo and in vitro, but remarkably, without restoring the affinity of the inner membrane complex for LptA. Based on the sensitivity of lptF suppressor mutants to selected stress conditions relative to wild-type cells, we show that there are additional regulatory functions of LptF and LptC that had not been identified. IMPORTANCE The presence of an external LPS layer in the outer membrane makes Gram-negative bacteria intrinsically resistant to many antibiotics. Millions of LPS molecules are transported to the cell surface per generation by the Lpt molecular machine made, in E. coli, by seven essential proteins. LptC is the unconventional regulatory subunit of the LptB2FGC ABC transporter, involved in coordinating energy production and LPS transport. Surprisingly, despite being essential for bacterial growth, LptC can be deleted, provided that a specific residue in the periplasmic domain of LptF is mutated and LptA is overexpressed. Here, we apply biochemical techniques to investigate the suppression mechanism. The data produced in this work disclose an unknown regulatory function of LptF in the transporter that not only expands the knowledge about the Lpt complex but can also be targeted by novel LPS biogenesis inhibitors.
Collapse
|
7
|
Sperandeo P, Martorana AM, Zaccaria M, Polissi A. Targeting the LPS export pathway for the development of novel therapeutics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119406. [PMID: 36473551 DOI: 10.1016/j.bbamcr.2022.119406] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
The rapid rise of multi-resistant bacteria is a global health threat. This is especially serious for Gram-negative bacteria in which the impermeable outer membrane (OM) acts as a shield against antibiotics. The development of new drugs with novel modes of actions to combat multi-drug resistant pathogens requires the selection of suitable processes to be targeted. The LPS export pathway is an excellent under exploited target for drug development. Indeed, LPS is the major determinant of the OM permeability barrier, and its biogenetic pathway is conserved in most Gram-negatives. Here we describe efforts to identify inhibitors of the multiprotein Lpt system that transports LPS to the cell surface. Despite none of these molecules has been approved for clinical use, they may represent valuable compounds for optimization. Finally, the recent discovery of a link between inhibition of LPS biogenesis and changes in peptidoglycan structure uncovers additional targets to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Alessandra M Martorana
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Marta Zaccaria
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Alessandra Polissi
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy.
| |
Collapse
|
8
|
Wilson A, Ruiz N. The transmembrane α-helix of LptC participates in LPS extraction by the LptB 2 FGC transporter. Mol Microbiol 2022; 118:61-76. [PMID: 35678757 PMCID: PMC9544173 DOI: 10.1111/mmi.14952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022]
Abstract
Lipopolysaccharide (LPS) is an essential component of the outer membrane of most Gram‐negative bacteria that provides resistance to various toxic compounds and antibiotics. Newly synthesized LPS is extracted from the inner membrane by the ATP‐binding cassette (ABC) transporter LptB2FGC, which places the glycolipid onto a periplasmic protein bridge that connects to the outer membrane. This ABC transporter is structurally unusual in that it associates with an additional protein, LptC. The periplasmic domain of LptC is part of the transporter's bridge while its transmembrane α‐helix intercalates into the LPS‐binding cavity of the core LptB2FG transporter. LptC’s transmembrane helix affects the in vitro ATPase activity of LptB2FG, but its role in LPS transport in cells remains undefined. Here, we describe two roles of LptC’s transmembrane helix in Escherichia coli. We demonstrate that it is required to maintain proper levels of LptC and participates in coupling the activity of the ATPase LptB to that of its transmembrane partners LptF/LptG prior to loading LPS onto the periplasmic bridge. Our data support a model in which the association of LptC’s transmembrane helix with LptFG creates a nonessential step that slows down the LPS transporter.
Collapse
Affiliation(s)
- Andrew Wilson
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|