1
|
Lv K, Xie Y, Yu Q, Zhang N, Zheng Q, Wu J, Zhang J, Li J, Zhao H, Xu W. Amur Grape VaMYB4a-VaERF054-Like Module Regulates Cold Tolerance Through a Regulatory Feedback Loop. PLANT, CELL & ENVIRONMENT 2025; 48:1130-1148. [PMID: 39412230 DOI: 10.1111/pce.15196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 01/04/2025]
Abstract
Cold stress can limit the growth and development of grapevines, which can ultimately reduce productivity. However, the mechanisms by which grapevines respond to cold stress are not yet fully understood. Here, we characterized an APETALA2/ethylene response factor (AP2/ERF) which was shown to be a target gene of our previously identified VaMYB4a from Amur grape. We further investigated the molecular interactions between VaMYB4a and VaERF054-like transcription factors in grapes and their role in cold stress tolerance. Our results demonstrated that VaMYB4a directly binds to and activates the VaERF054-like gene promoter, leading to its enhanced expression. Moreover, we also explored the influence of ethylene precursors and inhibitors on VaERF054-like expression and grape cold tolerance. Our findings indicate that VaERF054-like contribute to cold tolerance in grapes through modulation of the ethylene pathway and the CBF signal pathway. Overexpression of VaERF054-like in Vitis vinifera 'Chardonnay' calli and transgenic grape lines resulted in increased freezing stress tolerance, confirming its role in the cold stress response. We further confirmed the interaction between VaMYB4a and VaERF054-like in vivo and in vitro. The co-transformation of VaMYB4a and VaERF054-like in grape calli demonstrates a synergistic interaction, enhancing the cold tolerance through a regulatory feedback mechanism. Our finding provides new insights into grape cold tolerance mechanisms, potentially contributing to the development of cold-resistant grape varieties.
Collapse
Affiliation(s)
- Kai Lv
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Yaping Xie
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Qinhan Yu
- School of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Ningbo Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan, China
| | - Qiaoling Zheng
- School of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Jieping Wu
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Junxia Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Junduo Li
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Huixian Zhao
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Weirong Xu
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
- School of Life Science, Ningxia University, Yinchuan, Ningxia, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan, China
| |
Collapse
|
2
|
Dai Y, Zhong Y, Xu F, Gu S, Zhou H, Wang J, Yin D, Yin L, Shen X, Pan X, Liu X. Development and evaluation of three multienzyme isothermal rapid amplification assays for fowl adenovirus serotype 4. Poult Sci 2024; 103:104452. [PMID: 39504832 PMCID: PMC11570712 DOI: 10.1016/j.psj.2024.104452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is the main causative agent of hydropericardium hepatitis syndrome (HHS), which has resulted in huge economic losses to the poultry industry in recent years. Hence, a rapid and simple visual detection method is needed for identification of FAdV-4. In this study, three multienzyme isothermal rapid amplification (MIRA) assays, basic MIRA, MIRA-qPCR and MIRA-LFD were developed for detection of FAdV-4. The amplification primers and reaction conditions were optimized, and the specificity and sensitivity of the assays were evaluated. The MIRA assays were specific for FAdV-4 with no cross-reaction with novel goose astrovirus, H9 subtype avian influenza virus, duck enteritis virus, Muscovy duck reovirus, or duck circovirus. The basic MIRA assay required only one primer pair and the reaction can be completed within 30 min at 36 °C. The MIRA-qPCR and MIRA-LFD assays were completed in 20 min with a minimum detection limit of 1 × 101 copies/μL and 1 × 102 copies/μL, respectively. The results of the MIRA-LFD assay can be observed directly with the naked eye, omitting the need for specialized instruments. The positive rate of three proposed MIRA assays were consistent with that of the conventional PCR assay. The MIRA assays are simple, rapid, and effective diagnostic tools for field detection of FAdV-4.
Collapse
Affiliation(s)
- Yin Dai
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China.
| | - Yueyi Zhong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Fazhi Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Siqin Gu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Huiqin Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jieru Wang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Dongdong Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Lei Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Xuehuai Shen
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Xiaocheng Pan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Xuelan Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Chang Y, Zhang M, Liu G, Wu X, Yan Q, Yang C, Liu L, Feng Y, Xia X. Rapid and sensitive detection of Mycobacterium tuberculosis using nested multi-enzyme isothermal rapid amplification in a single reaction. Microbiol Spectr 2024; 12:e0088724. [PMID: 39465949 PMCID: PMC11619386 DOI: 10.1128/spectrum.00887-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/03/2024] [Indexed: 10/29/2024] Open
Abstract
Tuberculosis (TB) remains a major global health problem, and there is an urgent need for rapid, sensitive, and easy-to-use diagnostic technologies to improve TB diagnosis. In this study, we developed the nested multi-enzyme isothermal rapid amplification (nestMIRA) assay for TB. We designed several pairs of primers and probes targeting the IS6110 sequence of Mycobacterium tuberculosis (Mtb) and performed combinatorial testing to optimize the performance of the TB nestMIRA assay. The reaction can be performed at a constant temperature of approximately 40°C and completed within 30 minutes in the same tube without opening the central cap. There has been no cross-reactivity with common non-tuberculous mycobacteria (NTB) and respiratory pathogens. The TB nestMIRA assay has a minimum detection limit of 5 copies/μL for H37Rv genomic DNA and a limit of quantification of 100 CFU/ml. To test the diagnostic performance of the TB nestMIRA assay, we conducted a 163-person clinical cohort study using comprehensive reference standards as the gold standard for clinical diagnosis. Our study showed that TB nestMIRA performed slightly better than GeneXpert MTB/RIF (Xpert) (85.27% vs. 82.17%) and significantly better than culture (55.81%) and acid-fast bacillus (AFB) smear (38.76%). The TB nestMIRA assay offers speed, specificity, sensitivity, and convenience. We believe that it has the potential to be a rapid alternative for TB diagnosis, particularly in resource-limited settings. IMPORTANCE In this study, we have successfully developed a method called nested multi-enzyme isothermal rapid amplification (nestMIRA) for the detection of Mycobacterium tuberculosis (Mtb). This method involves a two-step thermostatic amplification process in the same tube and can be read using fluorescence and lateral flow dipstick (LFD) assays. It is known to be rapid, specific, and highly sensitive. Our method has shown promising results in the detection of clinical specimens, and we believe that it can be a valuable tool for the rapid detection of Mtb in a clinical setting.
Collapse
Affiliation(s)
- Yingchao Chang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Mi Zhang
- Medical Laboratory, Yunnan Provincial Hospital of Infectious Disease, Kunming, Yunnan, China
| | - Gaowen Liu
- Yunnan Kecan Biotechnology Co., Ltd, Kunming, China
| | - Xinlin Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qiaolu Yan
- Department of Respiratory and Critical Care Medicine, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Cuixian Yang
- Medical Laboratory, Yunnan Provincial Hospital of Infectious Disease, Kunming, Yunnan, China
| | - Li Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yue Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xueshan Xia
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Wu X, Liu G, Chang Y, Zheng M, Liu L, Xia X, Feng Y. Rapid and sensitive detection of chikungunya virus using one-tube, reverse transcription, semi-nested multi-enzyme isothermal rapid amplification, and lateral flow dipstick assays. J Clin Microbiol 2024; 62:e0038324. [PMID: 39140738 PMCID: PMC11389142 DOI: 10.1128/jcm.00383-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
Chikungunya fever is an acute infectious disease caused by chikungunya virus (CHIKV), which is transmitted by Aedes mosquitoes. Simple, rapid, and sensitive detection of CHIKV is critical for its prevention and spread. To address this issue, we combined one-tube, reverse transcription semi-nested, multi-enzyme isothermal rapid amplification, and lateral flow dipstick strips assay to detect CHIKV RNA. The study used a 318-bp gene fragment of CHIKV NSP4 as the target of the assay. This method of amplification takes 30 min for two-step amplification at 39°C. The dilution of amplification products was added to the LFD strip with results visible to the naked eye after 10 min. The method has a sensitivity of 1 copy/μL for the detection of CHIKV RNA, which is 100-fold higher than the conventional reverse transcription-multi-enzyme isothermal rapid amplification and 10-fold higher than the reverse transcription quantitative PCR (RT-qPCR) method. In addition, the method demonstrated good specificity and a better detection rate (85.7%, 18 of 21) than RT-qPCR (80.9%, 17 of 21) in clinically confirmed patient plasma samples. Thus, the rapid CHIKV RNA assay developed in this study will be an important tool for the rapid and accurate screening of patients for chikungunya fever. IMPORTANCE This study presents a new one-tube, reverse transcription semi-nested, multi-enzyme isothermal rapid amplification assay combined with lateral flow dipstick strips for the detection of CHIKV. This technique significantly improves sensitivity and outperforms RT-qPCR for the detection of CHIKV, especially in samples with low viral loads. It is also significantly faster than conventional RT-qPCR and does not require special equipment or a standard PCR laboratory. The combination of the isothermal amplification technology developed in this study with point-of-care molecular testing offers the potential for rapid, on-site, low-cost molecular diagnosis of CHIKV.
Collapse
Affiliation(s)
- Xinlin Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Kecan Biotechnology Co., Ltd, Kunming, Yunnan, China
| | - Gaowen Liu
- Yunnan Kecan Biotechnology Co., Ltd, Kunming, Yunnan, China
| | - Yingchao Chang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Kecan Biotechnology Co., Ltd, Kunming, Yunnan, China
| | - Mengyuan Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Li Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Kecan Biotechnology Co., Ltd, Kunming, Yunnan, China
| | - Xueshan Xia
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, Kunming Medical University, Kunming, Yunnan, China
| | - Yue Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Zhu Y, Chen L, Xu X, Ye W, Ni Z, Huo S, Hua J, Yun T, Yao H, Wang H, Zhang C. Development of a multienzyme isothermal and lateral flow dipstick combination assay for the rapid detection of goose astrovirus II. Front Cell Infect Microbiol 2024; 14:1424212. [PMID: 39165916 PMCID: PMC11333440 DOI: 10.3389/fcimb.2024.1424212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Goose astrovirus (GAstV) is a newly emerging pathogen that is currently widespread among geese, causing visceral gout and leading to substantial gosling mortalities, posing a severe threat to the waterfowl industry. GAstV II is the predominant epidemic strain, characterized by its high morbidity and mortality rate. Consequently, there is an urgent necessity to develop an effective diagnostic approach to control the dissemination of GAstV II, particularly in clinical farms with limited laboratory resources. Methods In this study, a novel multi-enzyme isothermal rapid amplification (MIRA) and lateral flow dipstick (LFD) combined assay was developed. Different primers designed specific targeting a highly conserved region within the viral RdRp gene for the detection of GAstV II. Primers optimized and MIRA-LFD assay analyzed its performance regarding limits of detection, specificity, and efficiency of detection. Results The developed MIRA amplification is conducted at a constant temperature and accomplished within 10 minutes. Subsequent naked-eye observation of the LFD strips merely takes 5 minutes. The established MIRA-LFD method exhibits high specificity, with no cross-reaction with other pathogens and attains a detection sensitivity of 1 copy/μl, which is consistent with the reverse transcription quantitative PCR (RT-qPCR) assay. Further evaluation with clinical samples indicates that the accuracy of this MIRA-LFD method correlates well with RT-qPCR for the detection of GAstV II. Conclusion In summary, the convenience, sensitivity, and rapidity of this newly developed detection method offer a significant advantage for on-site diagnosis of GAstV II.
Collapse
Affiliation(s)
- Yinchu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weicheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Suxin Huo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jionggang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
6
|
Liu MH, Guo X, Sun ML, Li JL, Liu SH, Chen YZ, Wang DY, Wang L, Li YZ, Yao J, Li Y, Pan YQ. Rapid detection of human cytomegalovirus by multienzyme isothermal rapid amplification and lateral flow dipsticks. Front Cell Infect Microbiol 2024; 14:1430302. [PMID: 39099883 PMCID: PMC11294213 DOI: 10.3389/fcimb.2024.1430302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Human cytomegalovirus (HCMV) is the most common viral infection seen in newborns. The major route of transmission for acquired human cytomegalovirus infection is breast milk from mothers who are HCMV seropositive to the infants. Thus, a rapid, economical, and simple method to perform HCMV test in breast milk is crucial and necessary for preventing acquired HCMV infection, especially in underdeveloped regions with limited laboratory resources. Methods In this study, an effective technique for the detection of HCMV was constructed by combining multienzyme isothermal rapid amplification (MIRA) and lateral flow chromatography strip (LFD). Primers for the conserved HCMV sequence UL83 were utilized for MIRA-LFD testing. Results Our results showed that the entire MIRA reaction could be completed in 12 minutes at 37°C, and LFD outcomes could be observed visibly after 10 minutes. The detection sensitivity of this method reached 50 copy/μl. Samples of breast milk were examined to compare MIRA-LFD and conventional qPCR. The accuracy of MIRA-LFD was 100%. Discussion The straightforward, rapid, economic features of the test can provide the significant advantages for the prevention of breast milk-acquired cytomegalovirus infection, particularly in resource-limited locations with high seroprevalence of cytomegalovirus.
Collapse
Affiliation(s)
- Ming-hui Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xiaochong Guo
- Laboratory Animal Center, China Medical University, Shenyang, China
| | - Mao-ling Sun
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jia-lun Li
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Shu-han Liu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Yun-zhou Chen
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Dong-yi Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lan Wang
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Yu-zhang Li
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Yang Li
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-qing Pan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Li W, Cai B, Chen R, Cui J, Wang H, Li Z. Application of recombinase polymerase amplification with CRISPR/Cas12a and multienzyme isothermal rapid amplification with lateral flow dipstick assay for Bactrocera correcta. PEST MANAGEMENT SCIENCE 2024; 80:3317-3325. [PMID: 38375936 DOI: 10.1002/ps.8035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Bactrocera correcta is a quarantine pest that negatively impacts the fruit and vegetable industry. Differentiating B. correcta from similar species, especially in non-adult stages, remains challenging. Rapid molecular identification techniques, such as recombinase polymerase amplification (RPA) combined with CRISPR/Cas12a and multienzyme isothermal rapid amplification with lateral flow dipstick (MIRA-LFD), play a crucial role in early monitoring and safeguarding agricultural production. Our study introduces two methods for the rapid visual identification of B. correcta. RESULTS Bactrocera correcta specific RPA primers, CRISPR RNA (crRNA), and the LFD probe were designed based on the cox1 genes. The RPA reaction conditions were optimized (at 37 °C for 8 min) for effective template DNA amplification. Two nucleic acid detection methods were established to visualize RPA. In the RPA-CRISPR/Cas12a system, the optimal LbCas12a/crRNA concentration ratio was 200:400 nmol L-1. Successful amplification was determined by the presence or absence of green fluorescence following 15 min incubation at 37 °C. The MIRA-LFD system achieved precise identification of the target species within 4 min at 37 °C. Both methods exhibited high specificity and sensitivity, allowing for detection from 1.0 × 10-1 ng μL-1 of DNA. Combined with rapid DNA extraction, rapid identification of individual B. correcta at different developmental stages was achieved, enhancing the practicality and convenience of the established methods. CONCLUSION Our research findings demonstrate that both the RPA-CRISPR/Cas12a and MIRA-LFD methods for B. correcta detection was accurate and rapid (within 30 min and 10 min, respectively), at 37 °C. Our methods do not rely on expensive equipment, thus possess high practical value, providing improved identification solutions for port quarantine pests and field applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weisong Li
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of MARA, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Sanya Institute of China Agricultural University, Sanya, P. R. China
| | - Bo Cai
- Post-Entry Quarantine Station for Tropical Plant, Haikou Customs District, Haikou, P. R. China
| | - Ranran Chen
- National Agro-Tech Extension and Service Center, Beijing, P. R. China
| | - Jianchen Cui
- Beijing Plant Protection Station, Beijing, P. R. China
| | - Hui Wang
- Hainan Adminstration of Off-season Plant Breeding, Sanya, P. R. China
| | - Zhihong Li
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of MARA, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Sanya Institute of China Agricultural University, Sanya, P. R. China
| |
Collapse
|
8
|
Sun ML, Yang Y, Hu R, Li JL, Liu SH, Chen YZ, Wang DY, Wang L, Li YZ, Zhong Y, Yao J, Li XN. Simple and field-adapted species identification of biological specimens combining multiplex multienzyme isothermal rapid amplification, lateral flow dipsticks, and universal primers for initial rapid screening without standard PCR laboratory. Int J Legal Med 2024; 138:561-570. [PMID: 37801116 DOI: 10.1007/s00414-023-03101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Species identification of biological specimens can provide the valuable clues and accelerate the speed of prosecution material processing for forensic investigation, especially when the case scene is inaccessible and the physical evidence is cumbersome. Thus, establishing a rapid, simple, and field-adapted species identification method is crucial for forensic scientists, particularly as first-line technology at the crime scene for initial rapid screening. In this study, we established a new field-adapted species identification method by combining multiplex multienzyme isothermal rapid amplification (MIRA), lateral flow dipstick (LFD) system, and universal primers. Universal primers targeting COX I and COX II genes were used in multiplex MIRA-LFD system for seven species identification, and a dedicated MIRA-LFD system primer targeting CYT B gene was used to detect the human material. DNA extraction was performed by collecting DNA directly from the centrifuged supernatant. Our study found that the entire amplification process took only 15 min at 37 °C and the results of LFDs could be visually observed after 10 min. The detection sensitivity of human material could reach 10 pg, which is equivalent to the detection of single cell. Different common animal samples mixed at the ratio of 1 ng:1 ng, 10 ng:1 ng, and 1 ng:10 ng could be detected successfully. Furthermore, the damaged and degraded samples could also be detected. Therefore, the convenient, feasible, and rapid approach for species identification is suitable for popularization as first-line technology at the crime scene for initial rapid screening and provides a great convenient for forensic application.
Collapse
Affiliation(s)
- Mao-Ling Sun
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China
| | - Ying Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ran Hu
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jia-Lun Li
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China
| | - Shu-Han Liu
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China
| | - Yun-Zhou Chen
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China
| | - Dong-Yi Wang
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China
| | - Lan Wang
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China
| | - Yu-Zhang Li
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China
| | - Yang Zhong
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China.
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China.
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China.
| | - Xiao-Na Li
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China.
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, People's Republic of China.
- China Medical University Center of Forensic Investigation, Shenyang, People's Republic of China.
| |
Collapse
|
9
|
Yang Z, Wang J, Qi Y, Shi Y, Li F, Wang W, Tian X, Mei X, Zhang Z, Wang S. A novel detection method based on MIRA-CRISPR/Cas13a-LFD targeting the repeated DNA sequence of Trichomonas vaginalis. Parasit Vectors 2024; 17:14. [PMID: 38191422 PMCID: PMC10775430 DOI: 10.1186/s13071-023-06106-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Trichomonas vaginalis is a protozoan parasite, widely recognized as the most prevalent non-viral sexually transmitted infection (STI) globally. This infection is linked to various complications, including pelvic inflammatory disease, adverse pregnancy outcomes, and an increased risk of acquiring HIV. Current molecular detection methods for T. vaginalis are often costly and technically challenging. METHODS We developed a novel detection method for T. vaginalis using a multi-enzyme isothermal rapid amplification-clustered regularly interspaced short palindromic repeats (MIRA-CRISPR)/Cas13a-lateral flow device (LFD). This assay targets the repeated DNA sequence (GenBank: L23861.1) of T. vaginalis and is performed at a constant temperature of 37 °C for approximately 1 hour. RESULTS The detection limit of genomic DNA (gDNA) using our protocol was 1 × 10-4 ng/μl. Specificity was confirmed by the absence of cross-reaction with gDNA from various other microorganisms such as Staphylococcus aureus, Lactobacillus taiwanensis, Escherichia coli, Monilia albicans, Giardia lamblia, or Toxoplasma gondii. Among 30 clinical samples tested, the positive rates of T. vaginalis detection were 33.33% (10/30) by wet mount microscopy, 40% (12/30) by nested polymerase chain reaction (PCR), 40% (12/30) by MIRA-CRISPR/Cas13a-LFD, and 40% (12/30) by the culture method. Compared with the culture method, the gold standard for diagnosing trichomoniasis, wet mount microscopy showed a sensitivity of 83.3% and moderate diagnostic agreement (kappa value = 0.87). Both nested PCR and MIRA-CRISPR/Cas13a-LFD exhibited 100% sensitivity and excellent diagnostic agreement (kappa value = 1). CONCLUSIONS The MIRA-CRISPR/Cas13a-LFD method is a convenient, rapid, stable, and accurate diagnostic tool for detecting T. vaginalis. This method has the potential to enhance the diagnosis and management of vaginitis, offering a significant improvement over existing diagnostic techniques.
Collapse
Affiliation(s)
- Zhenke Yang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jinghui Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yiming Qi
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yiping Shi
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Fakun Li
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Weijuan Wang
- Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaowei Tian
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xuefang Mei
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhenchao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Shuai Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
10
|
Heng P, Shi B, Li D, Ou H, He Y, Zhou L. Rapid visualization molecular fluorescence detection of methicillin-resistant Staphylococcus aureus using the multiplex MIRA-qPCR method. Biotechnol J 2023; 18:e2300200. [PMID: 37626194 DOI: 10.1002/biot.202300200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Multidrug-resistant (MDR) bacterial infections constitute a major public health problem worldwide. A rapid method for the detection of methicillin-resistant Staphylococcus aureus (MRSA) is critical for the timely prevention of bacterial infections and the accurate clinical use of drugs. The nuc and mecA genes are potentially indicative of MRSA infection and in this study, a multiplex molecular fluorescence multi-enzyme isothermal rapid amplification visual assay was proposed and established. The method is capable of detecting MRSA at 17 min, 40°C amplification, and is well differentiated from common clinical bacteria in specific assays, with 500 colony-forming units (CFU) mL-1 of MRSA detected under optimal conditions. This method has excellent diagnostic capabilities versus classical methods to detect clinical samples and shows potential in the identification of pathogenic microorganisms in a clinical setting.
Collapse
Affiliation(s)
- Pengfei Heng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Bo Shi
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Dongmei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hua Ou
- Department of Laboratory Medicine, People's Hospital of Xinjin District, Chengdu, Sichuan, China
| | - Yang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lili Zhou
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Li J, Shang MY, Deng SL, Li M, Su N, Ren XD, Sun XG, Li WM, Li YW, Li RX, Huang Q, Lu WP. Development of a novel integrated isothermal amplification system for detection of bacteria-spiked blood samples. AMB Express 2023; 13:135. [PMID: 38019349 PMCID: PMC10686969 DOI: 10.1186/s13568-023-01643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
Bloodstream infection (BSI) caused by bacteria is highly pathogenic and lethal, and easily develops whole-body inflammatory state. Immediate identification of disease-causing bacteria can improve patient prognosis. Traditional testing methods are not only time-consuming, but such tests are limited to laboratories. Recombinase polymerase amplification combined with lateral flow dipstick (RPA-LFD) holds great promise for rapid nucleic acid detection, but the uncapping operation after amplification easily contaminates laboratories. Therefore, the establishment of a more effective integrated isothermal amplification system has become an urgent problem to be solved. In this study, we designed and fabricated a hermetically sealed integrated isothermal amplification system. Combining with this system, a set of RPA-LFD assays for detecting S. aureus, K. peneumoniae, P. aeruginosa, and H. influenza in BSI were established and evaluated. The whole process could be completed in less than 15 min and the results can be visualized by the naked eye. The developed RPA-LFD assays displayed a good sensitivity, and no cross-reactivity was observed in seven similar bacterial genera. The results obtained with 60 clinical samples indicated that the developed RPA-LFD assays had high specifcity and sensitivity for identifying S. aureus, K. peneumoniae, P. aeruginosa, and H. influenza in BSI. In conclusion, our results showed that the developed RPA-LFD assay is an alternative to existing PCR-based methods for detection of S. aureus, K. peneumoniae, P. aeruginosa, and H. influenza in BSI in primary hospitals.
Collapse
Affiliation(s)
- Jin Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Mei-Yun Shang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Shao-Li Deng
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Min Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Ning Su
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Xiao-Dong Ren
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Xian-Ge Sun
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Wen-Man Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Yu-Wei Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Ruo-Xu Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China.
| | - Wei-Ping Lu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, P.R. China.
| |
Collapse
|
12
|
Reynolds J, Loeffler RS, Leigh PJ, Lopez HA, Yoon JY. Recent Uses of Paper Microfluidics in Isothermal Nucleic Acid Amplification Tests. BIOSENSORS 2023; 13:885. [PMID: 37754119 PMCID: PMC10526735 DOI: 10.3390/bios13090885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Isothermal nucleic acid amplification tests have recently gained popularity over polymerase chain reaction (PCR), as they only require a constant temperature and significantly simplify nucleic acid amplification. Recently, numerous attempts have been made to incorporate paper microfluidics into these isothermal amplification tests. Paper microfluidics (including lateral flow strips) have been used to extract nucleic acids, amplify the target gene, and detect amplified products, all toward automating the process. We investigated the literature from 2020 to the present, i.e., since the onset of the COVID-19 pandemic, during which a significant surge in isothermal amplification tests has been observed. Paper microfluidic detection has been used extensively for recombinase polymerase amplification (RPA) and its related methods, along with loop-mediated isothermal amplification (LAMP) and rolling circle amplification (RCA). Detection was conducted primarily with colorimetric and fluorometric methods, although a few publications demonstrated flow distance- and surface-enhanced Raman spectroscopic (SERS)-based detection. A good number of publications could be found that demonstrated both amplification and detection on paper microfluidic platforms. A small number of publications could be found that showed extraction or all three procedures (i.e., fully integrated systems) on paper microfluidic platforms, necessitating the need for future work.
Collapse
Affiliation(s)
- Jocelyn Reynolds
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Reid S. Loeffler
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Preston J. Leigh
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Hannah A. Lopez
- Department of Neuroscience, The University of Arizona, Tucson, AZ 85721, USA;
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| |
Collapse
|
13
|
Abu N, Mohd Bakhori N, Shueb RH. Lateral Flow Assay for Hepatitis B Detection: A Review of Current and New Assays. MICROMACHINES 2023; 14:1239. [PMID: 37374824 DOI: 10.3390/mi14061239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
From acute to chronic hepatitis, cirrhosis, and hepatocellular cancer, hepatitis B infection causes a broad spectrum of liver diseases. Molecular and serological tests have been used to diagnose hepatitis B-related illnesses. Due to technology limitations, it is challenging to identify hepatitis B infection cases at an early stage, particularly in a low- and middle-income country with constrained resources. Generally, the gold-standard methods to detect hepatitis B virus (HBV) infection requires dedicated personnel, bulky, expensive equipment and reagents, and long processing times which delay the diagnosis of HBV. Thus, lateral flow assay (LFA), which is inexpensive, straightforward, portable, and operates reliably, has dominated point-of-care diagnostics. LFA consists of four parts: a sample pad where samples are dropped; a conjugate pad where labeled tags and biomarker components are combined; a nitrocellulose membrane with test and control lines for target DNA-probe DNA hybridization or antigen-antibody interaction; and a wicking pad where waste is stored. By modifying the pre-treatment during the sample preparation process or enhancing the signal of the biomarker probes on the membrane pad, the accuracy of the LFA for qualitative and quantitative analysis can be improved. In this review, we assembled the most recent developments in LFA technologies for the progress of hepatitis B infection detection. Prospects for ongoing development in this area are also covered.
Collapse
Affiliation(s)
- Norhidayah Abu
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Advanced Materials Research Centre (AMREC), SIRIM Berhad, Lot 34, Jalan Hi-Tech 2/3, Kulim Hi-Tech Park, Kulim 09000, Kedah, Malaysia
| | - Noremylia Mohd Bakhori
- Advanced Materials Research Centre (AMREC), SIRIM Berhad, Lot 34, Jalan Hi-Tech 2/3, Kulim Hi-Tech Park, Kulim 09000, Kedah, Malaysia
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
14
|
Hu WW, He JW, Guo SL, Li J. Development and evaluation of a rapid and sensitive multienzyme isothermal rapid amplification with a lateral flow dipstick assay for detection of Acinetobacter baumannii in spiked blood specimens. Front Cell Infect Microbiol 2022; 12:1010201. [PMID: 36339332 PMCID: PMC9626983 DOI: 10.3389/fcimb.2022.1010201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose This study aimed to establish the multienzyme isothermal rapid amplification with a lateral flow dipstick (MIRA-LFD) assay and evaluate its performance in detection of A. baumannii in spiked blood specimens. Methods The study was divided into two stages: a pilot study to establish the methodology and a clinical validation study to evaluate its performance. In the first step, we designed primers specific to detect A. baumannii, optimized the MIRA-LFD assay and analyzed its performance regarding limits of detection, reproducibility, specificity, and efficiency of detection using real-time PCR method. In the second step, we obtained 50 spiked blood isolates and detected these pathogens by MIRA-LFD assay. The MIRA-LFD time was 15 min from DNA sample amplification to complete pathogen detection. Results The developed MIRA-LFD assay displayed a detection limit of 6 CFU/mL for detecting A. baumannii, which was significantly better than that of real-time PCR method, and no cross-reactivity was observed in other non-A. baumannii studied. The results obtained with 50 spiked blood isolates suggested that the developed MIRA-LFD assay had high specificity and sensitivity for identifying A. baumannii. Conclusions This study demonstrates that the established MIRA-LFD assay is time-saving, more effective and sensitive, which may become a powerful tool for rapid and reliable diagnosis of bloodstream infection caused by A. baumannii in primary hospitals.
Collapse
Affiliation(s)
- Wei-Wei Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Wei He
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Shu-Liang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jin Li, ; Shu-Liang Guo,
| | - Jin Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Jin Li, ; Shu-Liang Guo,
| |
Collapse
|
15
|
Heng P, Liu J, Song Z, Wu C, Yu X, He Y. Rapid detection of Staphylococcus aureus using a novel multienzyme isothermal rapid amplification technique. Front Microbiol 2022; 13:1027785. [PMID: 36312945 PMCID: PMC9606696 DOI: 10.3389/fmicb.2022.1027785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus aureus is a common pathogen that causes various infections. Therefore, it is crucial to develop a fast and easy detection method for diagnosing and preventing S. aureus infections. In this study, MIRA assay was developed and validated (specificity; 100%) for the detection of S. aureus with nuc as the target gene. The reaction temperature and reaction time were then optimized, and the best reaction was at 40°C, 20 min. The assay could detect S. aureus in only 25 min. Additionally, the limit of detection of MIRA was 5 × 102 CFU/ml, 10-fold lower than that of the traditional PCR. Furthermore, this assay efficiently detected 219 S. aureus of 335 strains obtained from different bacterial samples (detection accuracy; 99.40%). In conclusion, this study provides a rapid and easy-to-operate method for the detection of S. aureus, and thus can be used for the timely diagnosis and prevention of S. aureus infection.
Collapse
Affiliation(s)
- Pengfei Heng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jiakai Liu
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Zhen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiuzhong Yu
- Department of Laboratory Medicine, People’s Hospital of Xinjin District, Chengdu, Sichuan, China
| | - Yang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- *Correspondence: Yang He,
| |
Collapse
|
16
|
Liu H, Chang S, Chen S, Du Y, Wang H, Wang C, Xiang Y, Wang Q, Li Z, Wang S, Qiu S, Song H. Highly sensitive and rapid detection of SARS-CoV-2 via a portable CRISPR-Cas13a-based lateral flow assay. J Med Virol 2022; 94:5858-5866. [PMID: 36029033 PMCID: PMC9538558 DOI: 10.1002/jmv.28096] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 01/06/2023]
Abstract
To rapidly identify individuals infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and control the spread of coronavirus disease (COVID-19), there is an urgent need for highly sensitive on-site virus detection methods. A clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas)-based molecular diagnostic method was developed for this purpose. Here, a CRISPR system-mediated lateral flow assay (LFA) for SARS-CoV-2 was established based on multienzyme isothermal rapid amplification, CRISPR-Cas13a nuclease, and LFA. To improve the limit of detection (LoD), the crispr RNA, amplification primer, and probe were screened, in addition to concentrations of various components in the reaction system. The LoD of CRISPR detection was improved to 0.25 copy/μl in both fluorescence- and immunochromatography-based assays. To enhance the quality control of the CRISPR-based LFA method, glyceraldehyde-3-phosphate dehydrogenase was detected as a reference using a triple-line strip design in a lateral flow strip. In total, 52 COVID-19-positive and 101 COVID-19-negative clinical samples examined by reverse transcription polymerase chain reaction (RT-PCR) were tested using the CRISPR immunochromatographic detection technique. Results revealed 100% consistency, indicating the comparable effectiveness of our method to that of RT-PCR. In conclusion, this approach significantly improves the sensitivity and reliability of CRISPR-mediated LFA and provides a crucial tool for on-site detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Hongbo Liu
- Chinese PLA Center for Disease Control and PreventionBeijingChina
| | - Shuailei Chang
- Chinese PLA Center for Disease Control and PreventionBeijingChina,Department of Epidemiology, College of Public HealthZhengzhou UniversityZhengzhouChina
| | - Sijia Chen
- Chinese PLA Center for Disease Control and PreventionBeijingChina
| | - Yue Du
- Chinese PLA Center for Disease Control and PreventionBeijingChina,Department of Epidemiology, College of Public HealthZhengzhou UniversityZhengzhouChina
| | - Hui Wang
- Chinese PLA Center for Disease Control and PreventionBeijingChina
| | - Chao Wang
- Chinese PLA Center for Disease Control and PreventionBeijingChina
| | - Ying Xiang
- Chinese PLA Center for Disease Control and PreventionBeijingChina
| | - Qi Wang
- Chinese PLA Center for Disease Control and PreventionBeijingChina
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
| | - Shengqi Wang
- Beijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Shaofu Qiu
- Chinese PLA Center for Disease Control and PreventionBeijingChina
| | - Hongbin Song
- Chinese PLA Center for Disease Control and PreventionBeijingChina
| |
Collapse
|
17
|
Development and Evaluation of Duplex MIRA-qPCR Assay for Simultaneous Detection of Staphylococcus aureus and non-aureus Staphylococci. Microorganisms 2022; 10:microorganisms10091734. [PMID: 36144336 PMCID: PMC9502308 DOI: 10.3390/microorganisms10091734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus spp., especially Staphylococcus aureus (S. aureus), is an important pathogen in hospital-acquired infection and food poisoning. Here, we developed a multienzyme isothermal rapid amplification combined with duplex quantitative PCR (duplex MIRA-qPCR) method, which can simultaneously detect the S. aureus species-specific conserved gene FMN-bgsfp and the Staphylococcus genus-specific conserved gene tuf. This assay enabled the amplification of DNA within 20 min at a constant temperature of 39 °C. Specificity analysis indicated that all nine common Staphylococcus species were positive and non-Staphylococcus spp. were negative for tuf gene, whereas S. aureus was positive, non-aureus Staphylococci species and non-Staphylococcus spp. were negative for FMN-bgsfp gene, suggesting that duplex MIRA-qPCR exhibited high specificity. Meanwhile, the sensitivity was tested and the limit of detection (LoD) was 3 × 102 CFU/mL. The coefficient variation values ranged from 0.13% to 2.09%, indicating that the assay had good repeatability. Furthermore, all the nine common Staphylococcus species (including S. aureus) could be detected from four kinds of simulated samples and the LoD of S. aureus was 8.56 × 103 CFU/mL. In conclusion, the duplex MIRA-qPCR has advantages of stronger specificity, lower detection threshold, shorter detection time, and simpler operation, which is an effective tool to detect S. aureus and non-aureus Staphylococci spp. infections rapidly.
Collapse
|