1
|
Chen W, Zhou Z, Qi R, Zhou J, Liang H, Huang P, Zou Z, Dong L, Li H, Du B, Li P. Ameliorative effects of Trichosanthes kirilowii Maxim. seed oil on hyperlipidemia rats associated with the regulation of gut microbiology and metabolomics. Food Res Int 2024; 197:115141. [PMID: 39593355 DOI: 10.1016/j.foodres.2024.115141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 11/28/2024]
Abstract
The mechanisms underlying the ameliorative effects of polyunsaturated fatty acids (PUFAs) on metabolic disorders induced by a high-fat diet (HFD) remain poorly unclear. In this study, we investigated the anti-hyperlipidemic effects of Trichosanthes kirilowii Maxim. (T. kirilowii) seed oil rich in conjugated linolenic acid in HFD-induced hyperlipidemic rats, by the gut microbiome, cecum bile acids (BAs), and serum metabolomics. The results showed that T. kirilowii seed oil improved dyslipidemia, hepatic steatosis, oxidative stress, and inflammatory responses in HFD-induced rats. Meanwhile, T. kirilowii seed oil inhibited sterol regulatory element-binding protein 1c (SREBP-1c) mediated fatty acid synthesis and upregulated cholesterol 7-alpha hydroxylase (CYP7A1) mediated hepatic cholesterol metabolism to exert hypolipidemic effects. The administration of high dose T. kirilowii seed oil (THD) improved gut microbiota dysbiosis, increased the relative abundance of beneficial bacteria Romboutsia and unidentified_Oscillospiraceae, and decreased the relative abundance of Christensenellaceae_R-7 group, Phascolarctobacterium, and Bacteroides in HFD-induced rats. T. kirilowii seed oil reduced the accumulation of cecum primary BAs in HFD-induced rats. In addition, THD reversed the HFD-induced changes in 24 serum metabolites including leucine, isoleucine, acetylcarnitine, and glucose. Metabolic pathway enrichment analysis of the differential metabolites revealed that valine, leucine and isoleucine metabolism, butanoate metabolism, citrate cycle, and glycolysis were potential metabolic pathways involved in the anti-hyperlipidemic effects of T. kirilowii seed oil. In conclusion, this study found that dietary T. kirilowii seed oil alleviated gut microbiota dysbiosis and improved metabolic disorders in hyperlipidemic rats. This provides new insights into the anti-hyperlipidemic mechanism by which other families of PUFAs are derived from different plants.
Collapse
Affiliation(s)
- Weili Chen
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhangbao Zhou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ruida Qi
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jun Zhou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Huiying Liang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pinxi Huang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zebin Zou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ling Dong
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Hua Li
- Anhui Youyu Kuayue Food Development Co., Ltd, Anqing, Anhui 246300, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
2
|
Zhu L, Wang J, Tang Q, Liu Y. Structural Elucidation and Anti-Tumor Activity of a Polysaccharide (CP2-S) from Cordyceps militaris Fruit Bodies. Polymers (Basel) 2024; 16:1972. [PMID: 39065289 PMCID: PMC11280683 DOI: 10.3390/polym16141972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
A polysaccharide (CP2-S), consisting of glucose with a weight average molecular weight of 5.9 × 106, was purified from the fruit bodies of Cordyceps militaris. In this work, the corresponding structure and anti-tumor activity in vivo were investigated. Methylation and NMR analysis revealed that CP2-S was composed of a →4)-α-D-Glcp-(1→ backbone with partial substitution occurring at O-6 by T-linked α-D-Glcp in every ten residues, which has not been reported in previous reports. In vivo anti-tumor experiments showed that CP2-S could inhibit the growth of Lewis lung carcinoma in mice. Tumor inhibition rates were 17.8%, 24.5%, and 29.5% at dosages of 12.5, 50, and 100 mg/kg/d, respectively. Compared with the cisplatin group, mice treated with CP2-S exhibited a significant increase in spleen index (increased 22.7-42.4%) and thymus index (increased 47.7-36.8%). Additionally, serum levels of IgM and IgG in tumor-bearing mice increased by approximately 6.11~10.75-folds and 1.31~1.38-folds, respectively. These findings prove that CP2-S significantly inhibited the growth of Lewis lung carcinoma through immune-enhancing activity in mice.
Collapse
Affiliation(s)
- Lina Zhu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (L.Z.); (J.W.); (Q.T.)
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinyan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (L.Z.); (J.W.); (Q.T.)
| | - Qingjiu Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (L.Z.); (J.W.); (Q.T.)
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (L.Z.); (J.W.); (Q.T.)
| |
Collapse
|
3
|
Jang SW, Oh HH, Moon KE, Oh BM, Jeong DY, Song GS. Lactic acid bacteria-malted vinegar: fermentation characteristics and anti-hyperlipidemic effect. Food Sci Biotechnol 2024; 33:1425-1436. [PMID: 38585558 PMCID: PMC10992063 DOI: 10.1007/s10068-024-01528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 04/09/2024] Open
Abstract
In this study, the fermentation characteristics and functional properties of lactic acid bacteria-malted vinegar (LAB-MV) were investigated during the fermentation period. Changes in the components (organic acids, free sugars, free amino acids, β-glucan, and gamma-aminobutyric acid (GABA)) of MV (BWAF0d, BWAF10d, BWAF20d) and LAB-MV (LBWAF0d, LBWAF10d, LBWAF20d) were analyzed according to the fermentation time. The amounts of β-glucan and GABA in LBWAF20d were greater than those in BWAF20d (122.00 μg/mL, 83.06 μg/mL and 531.00 μg/mL, 181.31 μg/mL, respectively). The ACE1 and HMG-CoA reductase inhibitory activities of LBWAF20d were 98.16% (1/20 dilution factor, DF) and 91.01% (1/25 DF), respectively. The lipid accumulation ratio and total cholesterol levels in HepG2 cells treated with LBWAF20d (1/200 DF) were reduced by 45.85% and 54.48%, respectively, compared to those in the untreated group. These results suggest that LAB-MV, which comprises barley wine manufactured from LAB and yeast, may improve hepatic lipid metabolism.
Collapse
Affiliation(s)
- So-Won Jang
- Department of Food Science and Technology, Jeonbuk National University, 567, Baekje-Daero, Deokjin-Gu, Jeonju, Jeonbuk 54896 Republic of Korea
| | - Hyeon Hwa Oh
- Department of Food Science and Technology, Jeonbuk National University, 567, Baekje-Daero, Deokjin-Gu, Jeonju, Jeonbuk 54896 Republic of Korea
| | - Kyung Eun Moon
- Department of Food Science and Technology, Jeonbuk National University, 567, Baekje-Daero, Deokjin-Gu, Jeonju, Jeonbuk 54896 Republic of Korea
| | - Byung-Min Oh
- Department of Food Science and Technology, Jeonbuk National University, 567, Baekje-Daero, Deokjin-Gu, Jeonju, Jeonbuk 54896 Republic of Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, 56048 Republic of Korea
| | - Geun-Seoup Song
- Department of Food Science and Technology, Jeonbuk National University, 567, Baekje-Daero, Deokjin-Gu, Jeonju, Jeonbuk 54896 Republic of Korea
| |
Collapse
|
4
|
Bai C, Su F, Zhang W, Kuang H. A Systematic Review on the Research Progress on Polysaccharides from Fungal Traditional Chinese Medicine. Molecules 2023; 28:6816. [PMID: 37836659 PMCID: PMC10574063 DOI: 10.3390/molecules28196816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Traditional Chinese medicine (TCM) is a class of natural drugs with multiple components and significant therapeutic effects through multiple targets. It also originates from a wide range of sources containing plants, animals and minerals, and among them, plant-based Chinese medicine also includes fungi. Fungal traditional Chinese medicine is a medicinal resource with a long history and widespread application in China. Accumulating evidence confirms that polysaccharide is the main pharmacodynamic material on which fungal TCM is based. The purpose of the current systematic review is to summarize the extraction, isolation, structural identification, biological functions, quality control and medicinal and edible applications of polysaccharides from fungal TCM in the past three years. This paper will supplement and deepen the understanding and application of polysaccharides from fungal TCM, and propose some valuable insights for further research and development of drugs and functional foods.
Collapse
Affiliation(s)
| | | | | | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.B.); (F.S.); (W.Z.)
| |
Collapse
|
5
|
Liu X, Luo D, Guan J, Chen J, Xu X. Mushroom polysaccharides with potential in anti-diabetes: Biological mechanisms, extraction, and future perspectives: A review. Front Nutr 2022; 9:1087826. [PMID: 36590224 PMCID: PMC9794872 DOI: 10.3389/fnut.2022.1087826] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a global health threat. Searching for anti-diabetic components from natural resources is of intense interest to scientists. Mushroom polysaccharides have received growing attention in anti-diabetes fields due to their advantages in broad resources, structure diversity, and multiple bioactivities, which are considered an unlimited source of healthy active components potentially applied in functional foods and nutraceuticals. In this review, the current knowledge about the roles of oxidative stress in the pathogenesis of DM, the extraction method of mushroom polysaccharides, and their potential biological mechanisms associated with anti-diabetes, including antioxidant, hypolipidemic, anti-inflammatory, and gut microbiota modulatory actions, were summarized based on a variety of in vitro and in vivo studies, with aiming at better understanding the roles of mushroom polysaccharides in the prevention and management of DM and its complications. Finally, future perspectives including bridging the gap between the intervention of mushroom polysaccharides and the modulation of insulin signaling pathway, revealing structure-bioactivity of mushroom polysaccharides, developing synergistic foods, conducting well-controlled clinical trials that may be very helpful in discovering valuable mushroom polysaccharides and better applications of mushroom polysaccharides in diabetic control were proposed.
Collapse
Affiliation(s)
| | | | | | | | - Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| |
Collapse
|
6
|
Zhang Y, Jia XB, Liu YC, Yu WQ, Si YH, Guo SD. Fenofibrate enhances lipid deposition via modulating PPARγ, SREBP-1c, and gut microbiota in ob/ob mice fed a high-fat diet. Front Nutr 2022; 9:971581. [PMID: 36172518 PMCID: PMC9511108 DOI: 10.3389/fnut.2022.971581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is characterized by lipid accumulation in distinct organs. Presently, fenofibrate is a commonly used triglyceride-lowering drug. This study is designed to investigate whether long-term fenofibrate intervention can attenuate lipid accumulation in ob/ob mouse, a typical model of obesity. Our data demonstrated that fenofibrate intervention significantly decreased plasma triglyceride level by 21.0%, increased liver index and hepatic triglyceride content by 31.7 and 52.1%, respectively, and elevated adipose index by 44.6% compared to the vehicle group. As a PPARα agonist, fenofibrate intervention significantly increased the expression of PPARα protein in the liver by 46.3% and enhanced the expression of LDLR protein by 3.7-fold. However, fenofibrate dramatically increased the expression of PPARγ and SREBP-1c proteins by ~2.1- and 0.9-fold in the liver, respectively. Fenofibrate showed no effects on the expression of genes-related to fatty acid β-oxidation. Of note, it significantly increased the gene expression of FAS and SCD-1. Furthermore, fenofibrate modulated the gut microbiota. Collectively, long-term fenofibrate induces lipid accumulation in liver and adipose tissues in ob/ob mice by enhancing the expression of adipogenesis-related proteins and gut microbiota. These data suggest that fenofibrate may have limited effects on attenuating lipid deposition in obese patients.
Collapse
Affiliation(s)
- Ying Zhang
- College of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiu-Bin Jia
- College of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yun-Chao Liu
- College of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wen-Qian Yu
- Innovative Drug Research Centre, School of Pharmacy, Institute of Lipid Metabolism and Atherosclerosis, Weifang Medical University, Weifang, China
| | - Yan-Hong Si
- College of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- College of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Yan-Hong Si
| | - Shou-Dong Guo
- Innovative Drug Research Centre, School of Pharmacy, Institute of Lipid Metabolism and Atherosclerosis, Weifang Medical University, Weifang, China
- *Correspondence: Shou-Dong Guo
| |
Collapse
|
7
|
Lin S, Hsu WK, Tsai MS, Hsu TH, Lin TC, Su HL, Wang SH, Jin D. Effects of Cordyceps militaris fermentation products on reproductive development in juvenile male mice. Sci Rep 2022; 12:13720. [PMID: 35962055 PMCID: PMC9372929 DOI: 10.1038/s41598-022-18066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/04/2022] [Indexed: 11/08/2022] Open
Abstract
Cordyceps militaris (CM) is a popular medicinal fungus; however, few studies have focused on its impact on the male reproductive system. We evaluated the effects of CM fermentation products on the reproductive development of juvenile male (JM) mice. Mice were divided into four experimental groups, each fed 5% CM products (weight per weight (w/w) in normal diet): extracellular polysaccharides (EPS), fermentation broth (FB), mycelia (MY), and whole fermentation products (FB plus MY, FBMY) for 28 days, while mice in the control group (CT) were fed a normal diet. Basic body parameters, testicular structure, sperm parameters, and sex hormones concentrations were analyzed. Compared to the CT group, mice in the EPS, MY, and FBMY groups showed a significantly increased mean seminiferous tubule area (p < 0.05), mice in the FB and MY groups had significantly higher sperm concentrations (p < 0.05), and mice in the EPS, FB, and FBMY groups showed significantly increased ratios of motile sperm (p < 0.05). Meanwhile, EPS significantly promoted the ability of JM mice to synthesize testosterone (p < 0.05). Furthermore, all CM products significantly increased the food intake of JM mice (p < 0.05) but did not significantly change their water intake and body weight gain (p > 0.05). In conclusion, CM products, especially EPS, exhibit strong androgen-like activities that can promote male reproductive development.
Collapse
Affiliation(s)
- Shan Lin
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, 311399, Zhejiang, China
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua, 515006, Taiwan
| | - Wen-Kuang Hsu
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua, 515006, Taiwan
| | - Ming-Shiun Tsai
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua, 515006, Taiwan
| | - Tai-Hao Hsu
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua, 515006, Taiwan
| | - Tso-Ching Lin
- Department of Sport and Health Management, Da-Yeh University, Changhua, 515006, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Sue-Hong Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, 402306, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402306, Taiwan.
| | - Dazhi Jin
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China.
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, 311399, Zhejiang, China.
| |
Collapse
|
8
|
Miao M, Yu WQ, Li Y, Sun YL, Guo SD. Structural Elucidation and Activities of Cordyceps militaris-Derived Polysaccharides: A Review. Front Nutr 2022; 9:898674. [PMID: 35711557 PMCID: PMC9193282 DOI: 10.3389/fnut.2022.898674] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
Cordyceps militaris is a parasitic edible fungus and has been used as tonics for centuries. Polysaccharides are a major water-soluble component of C. militaris. Recently, C. militaris-derived polysaccharides have been given much attention due to their various actions including antioxidant, anti-inflammatory, anti-tumor, anti-hyperlipidemic, anti-diabetic, anti-atherosclerotic, and immunomodulatory effects. These bioactivities are determined by the various structural characteristics of polysaccharides including monosaccharide composition, molecular weight, and glycosidic linkage. The widespread use of advanced analytical analysis tools has greatly improved the elucidation of the structural characteristics of C. militaris-derived polysaccharides. However, the methods for polysaccharide structural characterization and the latest findings related to C. militaris-derived polysaccharides, especially the potential structure-activity relationship, have not been well-summarized in recent reviews of the literature. This review will discuss the methods used in the elucidation of the structure of polysaccharides and structural characteristics as well as the signaling pathways modulated by C. militaris-derived polysaccharides. This article provides information useful for the development of C. militaris-derived polysaccharides as well as for investigating other medicinal polysaccharides.
Collapse
|
9
|
Zhang BH, Yin F, Qiao YN, Guo SD. Triglyceride and Triglyceride-Rich Lipoproteins in Atherosclerosis. Front Mol Biosci 2022; 9:909151. [PMID: 35693558 PMCID: PMC9174947 DOI: 10.3389/fmolb.2022.909151] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is still the leading cause of death globally, and atherosclerosis is the main pathological basis of CVDs. Low-density lipoprotein cholesterol (LDL-C) is a strong causal factor of atherosclerosis. However, the first-line lipid-lowering drugs, statins, only reduce approximately 30% of the CVD risk. Of note, atherosclerotic CVD (ASCVD) cannot be eliminated in a great number of patients even their LDL-C levels meet the recommended clinical goals. Previously, whether the elevated plasma level of triglyceride is causally associated with ASCVD has been controversial. Recent genetic and epidemiological studies have demonstrated that triglyceride and triglyceride-rich lipoprotein (TGRL) are the main causal risk factors of the residual ASCVD. TGRLs and their metabolites can promote atherosclerosis via modulating inflammation, oxidative stress, and formation of foam cells. In this article, we will make a short review of TG and TGRL metabolism, display evidence of association between TG and ASCVD, summarize the atherogenic factors of TGRLs and their metabolites, and discuss the current findings and advances in TG-lowering therapies. This review provides information useful for the researchers in the field of CVD as well as for pharmacologists and clinicians.
Collapse
Affiliation(s)
| | | | - Ya-Nan Qiao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|