1
|
Tapescu I, Cherry S. DDX RNA helicases: key players in cellular homeostasis and innate antiviral immunity. J Virol 2024; 98:e0004024. [PMID: 39212449 PMCID: PMC11494928 DOI: 10.1128/jvi.00040-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
RNA helicases are integral in RNA metabolism, performing important roles in cellular homeostasis and stress responses. In particular, the DExD/H-box (DDX) helicase family possesses a conserved catalytic core that binds structural features rather than specific sequences in RNA targets. DDXs have critical roles in all aspects of RNA metabolism including ribosome biogenesis, translation, RNA export, and RNA stability. Importantly, functional specialization within this family arises from divergent N and C termini and is driven at least in part by gene duplications with 18 of the 42 human helicases having paralogs. In addition to their key roles in the homeostatic control of cellular RNA, these factors have critical roles in RNA virus infection. The canonical RIG-I-like receptors (RLRs) play pivotal roles in cytoplasmic sensing of viral RNA structures, inducing antiviral gene expression. Additional RNA helicases function as viral sensors or regulators, further diversifying the innate immune defense arsenal. Moreover, some of these helicases have been coopted by viruses to facilitate their replication. Altogether, DDX helicases exhibit functional specificity, playing intricate roles in RNA metabolism and host defense. This review will discuss the mechanisms by which these RNA helicases recognize diverse RNA structures in cellular and viral RNAs, and how this impacts RNA processing and innate immune responses.
Collapse
Affiliation(s)
- Iulia Tapescu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Zhang YM, Li B, Wu WQ. Single-molecule insights into repetitive helicases. J Biol Chem 2024:107894. [PMID: 39424144 DOI: 10.1016/j.jbc.2024.107894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Helicases are ubiquitous motors involved in almost all aspects of nucleic acid metabolism; therefore, revealing their unwinding behaviors and mechanisms is fundamentally and medically essential. In recent decades, single-molecule applications have revolutionized our ability to study helicases by avoiding the averaging of bulk assays and bridging the knowledge gap between dynamics and structures. This advancement has updated our understanding of the biochemical properties of helicases, such as their rate, directionality, processivity, and step size, while also uncovering unprecedented mechanistic insights. Among these, repetitive motion, a new feature of helicases, is one of the most remarkable discoveries. However, comprehensive reviews and comparisons are still lacking. Consequently, the present review aims to summarize repetitive helicases, compare the repetitive phenomena, and discuss the underlying molecular mechanisms. This review may provide a systematic understanding of repetitive helicases and help understand their cellular functions.
Collapse
Affiliation(s)
- Ya-Mei Zhang
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Aizheimer's Disease, Henan University, Kaifeng, 475004, China
| | - Bo Li
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Aizheimer's Disease, Henan University, Kaifeng, 475004, China
| | - Wen-Qiang Wu
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Aizheimer's Disease, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
3
|
Herbert A. A Compendium of G-Flipon Biological Functions That Have Experimental Validation. Int J Mol Sci 2024; 25:10299. [PMID: 39408629 PMCID: PMC11477331 DOI: 10.3390/ijms251910299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
As with all new fields of discovery, work on the biological role of G-quadruplexes (GQs) has produced a number of results that at first glance are quite baffling, sometimes because they do not fit well together, but mostly because they are different from commonly held expectations. Like other classes of flipons, those that form G-quadruplexes have a repeat sequence motif that enables the fold. The canonical DNA motif (G3N1-7)3G3, where N is any nucleotide and G is guanine, is a feature that is under active selection in avian and mammalian genomes. The involvement of G-flipons in genome maintenance traces back to the invertebrate Caenorhabditis elegans and to ancient DNA repair pathways. The role of GQs in transcription is supported by the observation that yeast Rap1 protein binds both B-DNA, in a sequence-specific manner, and GQs, in a structure-specific manner, through the same helix. Other sequence-specific transcription factors (TFs) also engage both conformations to actuate cellular transactions. Noncoding RNAs can also modulate GQ formation in a sequence-specific manner and engage the same cellular machinery as localized by TFs, linking the ancient RNA world with the modern protein world. The coevolution of noncoding RNAs and sequence-specific proteins is supported by studies of early embryonic development, where the transient formation of G-quadruplexes coordinates the epigenetic specification of cell fate.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42 8th Street, Unit 3412, Charlestown, MA 02129, USA
| |
Collapse
|
4
|
Bai G, Endres T, Kühbacher U, Mengoli V, Greer BH, Peacock EM, Newton MD, Stanage T, Dello Stritto MR, Lungu R, Crossley MP, Sathirachinda A, Cortez D, Boulton SJ, Cejka P, Eichman BF, Cimprich KA. HLTF resolves G4s and promotes G4-induced replication fork slowing to maintain genome stability. Mol Cell 2024; 84:3044-3060.e11. [PMID: 39142279 PMCID: PMC11366124 DOI: 10.1016/j.molcel.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
G-quadruplexes (G4s) form throughout the genome and influence important cellular processes. Their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected role for the double-stranded DNA (dsDNA) translocase helicase-like transcription factor (HLTF) in responding to G4s. We show that HLTF, which is enriched at G4s in the human genome, can directly unfold G4s in vitro and uses this ATP-dependent translocase function to suppress G4 accumulation throughout the cell cycle. Additionally, MSH2 (a component of MutS heterodimers that bind G4s) and HLTF act synergistically to suppress G4 accumulation, restrict alternative lengthening of telomeres, and promote resistance to G4-stabilizing drugs. In a discrete but complementary role, HLTF restrains DNA synthesis when G4s are stabilized by suppressing primase-polymerase (PrimPol)-dependent repriming. Together, the distinct roles of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.
Collapse
Affiliation(s)
- Gongshi Bai
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Theresa Endres
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Ulrike Kühbacher
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Valentina Mengoli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland
| | - Briana H Greer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Emma M Peacock
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew D Newton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tyler Stanage
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Roxana Lungu
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Magdalena P Crossley
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Ataya Sathirachinda
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Karlene A Cimprich
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Zhuk AS, Stepchenkova EI, Zotova IV, Belopolskaya OB, Pavlov YI, Kostroma II, Gritsaev SV, Aksenova AY. G-Quadruplex Forming DNA Sequence Context Is Enriched around Points of Somatic Mutations in a Subset of Multiple Myeloma Patients. Int J Mol Sci 2024; 25:5269. [PMID: 38791307 PMCID: PMC11121618 DOI: 10.3390/ijms25105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy, which remains incurable despite recent advances in treatment strategies. Like other forms of cancer, MM is characterized by genomic instability, caused by defects in DNA repair. Along with mutations in DNA repair genes and genotoxic drugs used to treat MM, non-canonical secondary DNA structures (four-stranded G-quadruplex structures) can affect accumulation of somatic mutations and chromosomal abnormalities in the tumor cells of MM patients. Here, we tested the hypothesis that G-quadruplex structures may influence the distribution of somatic mutations in the tumor cells of MM patients. We sequenced exomes of normal and tumor cells of 11 MM patients and analyzed the data for the presence of G4 context around points of somatic mutations. To identify molecular mechanisms that could affect mutational profile of tumors, we also analyzed mutational signatures in tumor cells as well as germline mutations for the presence of specific SNPs in DNA repair genes or in genes regulating G-quadruplex unwinding. In several patients, we found that sites of somatic mutations are frequently located in regions with G4 context. This pattern correlated with specific germline variants found in these patients. We discuss the possible implications of these variants for mutation accumulation and specificity in MM and propose that the extent of G4 context enrichment around somatic mutation sites may be a novel metric characterizing mutational processes in tumors.
Collapse
Affiliation(s)
- Anna S. Zhuk
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.S.Z.); (I.V.Z.)
- Institute of Applied Computer Science, ITMO University, 197101 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia;
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Irina V. Zotova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.S.Z.); (I.V.Z.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia;
| | - Olesya B. Belopolskaya
- Resource Center “Bio-Bank Center”, Research Park of St. Petersburg State University, 198504 St. Petersburg, Russia;
- The Laboratory of Genogeography, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ivan I. Kostroma
- City Hospital No. 15, 198205 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | | | - Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.S.Z.); (I.V.Z.)
| |
Collapse
|
6
|
Fu L, Wu Q, Fu J. Exploring the biological roles of DHX36, a DNA/RNA G-quadruplex helicase, highlights functions in male infertility: A comprehensive review. Int J Biol Macromol 2024; 268:131811. [PMID: 38677694 DOI: 10.1016/j.ijbiomac.2024.131811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/29/2024]
Abstract
It is estimated that 15 % of couples at reproductive age worldwide suffer from infertility, approximately 50 % of cases are caused by male factors. Significant progress has been made in the diagnosis and treatment of male infertility through assisted reproductive technology and molecular genetics methods. However, there is still inadequate research on the underlying mechanisms of gene regulation in the process of spermatogenesis. Guanine-quadruplexes (G4s) are a class of non-canonical secondary structures of nucleic acid commonly found in genomes and RNAs that play important roles in various biological processes. Interestingly, the DEAH-box helicase 36 (DHX36) displays high specificity for the G4s which can unwind both DNA G4s and RNA G4s enzymatically and is highly expressed in testis, thereby regulating multiple cellular functions including transcription, pre-mRNA splicing, translation, telomere maintenance, genomic stability, and RNA metabolism in development and male infertility. This review provides an overview of the roles of G4s and DHX36 in reproduction and development. We mainly focus on the potential role of DHX36 in male infertility. We also discuss possible future research directions regarding the mechanism of spermatogenesis mediated by DHX36 through G4s in spermatogenesis-related genes and provide new targets for gene therapy of male infertility.
Collapse
Affiliation(s)
- Li Fu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China; Department of Reproductive Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Junjiang Fu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
7
|
Bowleg JL, Mikek CG, Gwaltney SR. Computed interactions of berenil with restricted foldamers of c-MYC DNA G-quadruplexes. J Biomol Struct Dyn 2024; 42:2162-2169. [PMID: 37286380 DOI: 10.1080/07391102.2023.2217913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/16/2023] [Indexed: 06/09/2023]
Abstract
G-quadruplexes (G4s) are secondary four-stranded DNA helical structures made up of guanine-rich nucleic acids that can assemble in the promoter regions of multiple genes under the appropriate conditions. Stabilization of G4 structures by small molecules can regulate transcription in non-telomeric regions, including in proto-oncogenes and promoter regions, contributing to anti-proliferative and anti-tumor activities. Because G4s are detectable in cancer cells but not in normal cells, they make excellent drug discovery targets. Diminazene, DMZ (or berenil), has been shown to be an efficient G-quadruplex binder. Due to the stability of the folding topology, G-quadruplex structures are frequently found in the promotor regions of oncogenes and may play a regulatory role in gene activation. Using molecular docking and molecular dynamics simulations on several different binding poses, we have studied DMZ binding toward multiple G4 topologies of the c-MYC G-quadruplex. DMZ binds preferentially to G4s that have extended loops and flanking bases. This preference arises from its interactions with the loops and the flanking nucleotides, which were not found in the structure lacking extended regions. The binding to the G4s with no extended regions instead occurred mostly through end stacking. All binding sites for DMZ were confirmed by 100 ns molecular dynamics simulations and through binding enthalpies calculated using the MM-PBSA method. The primary driving forces were electrostatic, as the cationic DMZ interacts with the anionic phosphate backbone, and through van der Waals interactions, which primarily contributed in end stacking interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jerrano L Bowleg
- Department of Chemistry, Mississippi State University, College Town, MS, USA
| | - Clinton G Mikek
- Department of Chemistry, Mississippi State University, College Town, MS, USA
| | - Steven R Gwaltney
- Department of Chemistry, Mississippi State University, College Town, MS, USA
| |
Collapse
|
8
|
Kulikowicz T, Sommers JA, Fuchs KF, Wu Y, Brosh RM. Purification and biochemical characterization of the G4 resolvase and DNA helicase FANCJ. Methods Enzymol 2024; 695:1-27. [PMID: 38521581 DOI: 10.1016/bs.mie.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
G-quadruplex (G4) DNA or RNA poses a unique nucleic acid structure in genomic transactions. Because of the unique topology presented by G4, cells have exquisite mechanisms and pathways to metabolize G4 that arise in guanine-rich regions of the genome such as telomeres, promoter regions, ribosomal DNA, and other chromosomal elements. G4 resolvases are often represented by a class of molecular motors known as helicases that disrupt the Hoogsteen hydrogen bonds in G4 by harnessing the chemical energy of nucleoside triphosphate hydrolysis. Of special interest to researchers in the field, including us, is the human FANCJ DNA helicase that efficiently resolves G4 DNA structures. Notably, FANCJ mutations are linked to Fanconi Anemia and are prominent in breast and ovarian cancer. Since our discovery that FANCJ efficiently resolves G4 DNA structures 15 years ago, we and other labs have characterized mechanistic aspects of FANCJ-catalyzed G4 resolution and its biological importance in genomic integrity and cellular DNA replication. In addition to its G4 resolvase function, FANCJ is also a classic DNA helicase that acts on conventional duplex DNA structures, which are relevant to the enzyme's role in interstrand cross link repair, double-strand break repair via homologous recombination, and response to replication stress. Here, we describe detailed procedures for the purification of recombinant FANCJ protein and characterization of its G4 resolvase and duplex DNA helicase activity.
Collapse
Affiliation(s)
- Tomasz Kulikowicz
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Joshua A Sommers
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Kathleen F Fuchs
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States.
| |
Collapse
|
9
|
Bai G, Endres T, Kühbacher U, Greer BH, Peacock EM, Crossley MP, Sathirachinda A, Cortez D, Eichman BF, Cimprich KA. HLTF Prevents G4 Accumulation and Promotes G4-induced Fork Slowing to Maintain Genome Stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.563641. [PMID: 37961428 PMCID: PMC10634870 DOI: 10.1101/2023.10.27.563641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
G-quadruplexes (G4s) form throughout the genome and influence important cellular processes, but their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected, dual role for the dsDNA translocase HLTF in G4 metabolism. First, we find that HLTF is enriched at G4s in the human genome and suppresses G4 accumulation throughout the cell cycle using its ATPase activity. This function of HLTF affects telomere maintenance by restricting alternative lengthening of telomeres, a process stimulated by G4s. We also show that HLTF and MSH2, a mismatch repair factor that binds G4s, act in independent pathways to suppress G4s and to promote resistance to G4 stabilization. In a second, distinct role, HLTF restrains DNA synthesis upon G4 stabilization by suppressing PrimPol-dependent repriming. Together, the dual functions of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.
Collapse
|
10
|
Sato K, Knipscheer P. G-quadruplex resolution: From molecular mechanisms to physiological relevance. DNA Repair (Amst) 2023; 130:103552. [PMID: 37572578 DOI: 10.1016/j.dnarep.2023.103552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Guanine-rich DNA sequences can fold into stable four-stranded structures called G-quadruplexes or G4s. Research in the past decade demonstrated that G4 structures are widespread in the genome and prevalent in regulatory regions of actively transcribed genes. The formation of G4s has been tightly linked to important biological processes including regulation of gene expression and genome maintenance. However, they can also pose a serious threat to genome integrity especially by impeding DNA replication, and G4-associated somatic mutations have been found accumulated in the cancer genomes. Specialised DNA helicases and single stranded DNA binding proteins that can resolve G4 structures play a crucial role in preventing genome instability. The large variety of G4 unfolding proteins suggest the presence of multiple G4 resolution mechanisms in cells. Recently, there has been considerable progress in our detailed understanding of how G4s are resolved, especially during DNA replication. In this review, we first discuss the current knowledge of the genomic G4 landscapes and the impact of G4 structures on DNA replication and genome integrity. We then describe the recent progress on the mechanisms that resolve G4 structures and their physiological relevance. Finally, we discuss therapeutic opportunities to target G4 structures.
Collapse
Affiliation(s)
- Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
11
|
Sharma T, Kundu N, Kaur S, Shankaraswamy J, Saxena S. Why to target G-quadruplexes using peptides: Next-generation G4-interacting ligands. J Pept Sci 2023; 29:e3491. [PMID: 37009771 DOI: 10.1002/psc.3491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Guanine-rich oligonucleotides existing in both DNA and RNA are able to fold into four-stranded DNA secondary structures via Hoogsteen type hydrogen-bonding, where four guanines self-assemble into a square planar arrangement, which, when stacked upon each other, results in the formation of higher-order structures called G-quadruplexes. Their distribution is not random; they are more frequently present at telomeres, proto-oncogenic promoters, introns, 5'- and 3'-untranslated regions, stem cell markers, ribosome binding sites and so forth and are associated with various biological functions, all of which play a pivotal role in various incurable diseases like cancer and cellular ageing. Several studies have suggested that G-quadruplexes could not regulate biological processes by themselves; instead, various proteins take part in this regulation and can be important therapeutic targets. There are certain limitations in using whole G4-protein for therapeutics purpose because of its high manufacturing cost, laborious structure prediction, dynamic nature, unavailability for oral administration due to its degradation in the gut and inefficient penetration to reach the target site because of the large size. Hence, biologically active peptides can be the potential candidates for therapeutic intervention instead of the whole G4-protein complex. In this review, we aimed to clarify the biological roles of G4s, how we can identify them throughout the genome via bioinformatics, the proteins interacting with G4s and how G4-interacting peptide molecules may be the potential next-generation ligands for targeting the G4 motifs located in biologically important regions.
Collapse
Affiliation(s)
- Taniya Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nikita Kundu
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Sarvpreet Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Jadala Shankaraswamy
- Department of Fruit Science, College of Horticulture, Mojerla, Sri Konda Laxman Telangana State Horticultural University, Budwel, Telangana, India
| | - Sarika Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
12
|
Sapir T, Reiner O. HNRNPU's multi-tasking is essential for proper cortical development. Bioessays 2023; 45:e2300039. [PMID: 37439444 DOI: 10.1002/bies.202300039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/27/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein U (HNRNPU) is a nuclear protein that plays a crucial role in various biological functions, such as RNA splicing and chromatin organization. HNRNPU/scaffold attachment factor A (SAF-A) activities are essential for regulating gene expression, DNA replication, genome integrity, and mitotic fidelity. These functions are critical to ensure the robustness of developmental processes, particularly those involved in shaping the human brain. As a result, HNRNPU is associated with various neurodevelopmental disorders (HNRNPU-related neurodevelopmental disorder, HNRNPU-NDD) characterized by developmental delay and intellectual disability. Our research demonstrates that the loss of HNRNPU function results in the death of both neural progenitor cells and post-mitotic neurons, with a higher sensitivity observed in the former. We reported that HNRNPU truncation leads to the dysregulation of gene expression and alternative splicing of genes that converge on several signaling pathways, some of which are likely to be involved in the pathology of HNRNPU-related NDD.
Collapse
Affiliation(s)
- Tamar Sapir
- Weizmann Institute of Science, Molecular Genetics and Molecular Neuroscience, Rehovot, Central, Israel
| | - Orly Reiner
- Weizmann Institute of Science, Molecular Genetics and Molecular Neuroscience, Rehovot, Central, Israel
| |
Collapse
|
13
|
Olson CL, Barbour AT, Wieser TA, Wuttke DS. RPA engages telomeric G-quadruplexes more effectively than CST. Nucleic Acids Res 2023; 51:5073-5086. [PMID: 37140062 PMCID: PMC10250233 DOI: 10.1093/nar/gkad315] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
G-quadruplexes (G4s) are a set of stable secondary structures that form within guanine-rich regions of single-stranded nucleic acids that pose challenges for DNA maintenance. The G-rich DNA sequence at telomeres has a propensity to form G4s of various topologies. The human protein complexes Replication Protein A (RPA) and CTC1-STN1-TEN1 (CST) are implicated in managing G4s at telomeres, leading to DNA unfolding and allowing telomere replication to proceed. Here, we use fluorescence anisotropy equilibrium binding measurements to determine the ability of these proteins to bind various telomeric G4s. We find that the ability of CST to specifically bind G-rich ssDNA is substantially inhibited by the presence of G4s. In contrast, RPA tightly binds telomeric G4s, showing negligible changes in affinity for G4 structure compared to linear ssDNAs. Using a mutagenesis strategy, we found that RPA DNA-binding domains work together for G4 binding, and simultaneous disruption of these domains reduces the affinity of RPA for G4 ssDNA. The relative inability of CST to disrupt G4s, combined with the greater cellular abundance of RPA, suggests that RPA could act as a primary protein complex responsible for resolving G4s at telomeres.
Collapse
Affiliation(s)
- Conner L Olson
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
| | - Alexandra T Barbour
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
| | - Thomas A Wieser
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO80309, USA
| |
Collapse
|
14
|
Bai D, Shan SW, Zhang X, Li Y, Xie J, Wu WQ. Comprehensive insights into the structures and dynamics of plant telomeric G-quadruplexes. Int J Biol Macromol 2023; 231:123281. [PMID: 36657543 DOI: 10.1016/j.ijbiomac.2023.123281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Telomeres, which are located at the ends of eukaryotic chromosomes, are crucial for genomic maintenance. Most telomeric DNA is composed of tandemly repeated guanine (G)-rich sequences, which form G-quadruplexes (G4s). The structures and dynamics of telomeric G4s are essential for telomere functioning and helpful for G4-based biosensing. However, they are far from being understood, especially for plants. In this contribution, the folding, environment-induced G4 dynamics, and protein-catalyzed unfolding of plant telomeric G4s were comprehensively studied. It was found that diverse plant telomeric sequences from land plants to green algae could fold into G4 structures. In addition, 5'-proximal ssDNA but not 3'-proximal ssDNA drove conversion of anti-parallel G4 structures to parallel structures, and both 5' and 3' ssDNA decreased the stability of G4s in dilute solution. Furthermore, molecular crowding promoted the formation of parallel structures for three-layer but not for two-layer G4s, and increased the stability of all selected G4s. Finally, AtRecQ2 helicase resolved the stable parallel structure of typical plant telomeric G4 in crowded solution, but ssDNA binding protein AtRPA did not. Furthermore, AtRecQ2 unwound the structure more efficiently in the presence of AtRPA. The results may expand our understanding on the structures and dynamics of plant telomeric G4s.
Collapse
Affiliation(s)
- Di Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Song-Wang Shan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jie Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wen-Qiang Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
15
|
Holden L, Gkika KS, Burke CS, Long C, Keyes TE. Selective, Disruptive Luminescent Ru(II) Polypyridyl Probes of G-Quadruplex. Inorg Chem 2023; 62:2213-2227. [PMID: 36703307 PMCID: PMC9906756 DOI: 10.1021/acs.inorgchem.2c03903] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sensors capable of transducing G-quadruplex DNA binding are important both in solution and for imaging and interrogation in cellulo. Ru(II)-based light switches incorporating dipyridylphenazine (dppz) ligands are effective probes for recognition and imaging of DNA and its polymorphs including G-quadruplex, although selectivity is a limitation. While the majority of Ru(II)-based light switches reported to date, stabilize the quadruplex, imaging/theranostic probes that can disrupt G4s are of potentially enormous value in study and therapy for a range of disease states. We report here, on a Ru(II) complex (Ru-PDC3) that assembles the light switch capability of a Ru(II) dipyridylphenazine complex with the well-known G4-selective ligand Phen-DC3, into a single structure. The complex shows the anticipated light switch effect and strong affinity for G4 structures. Affinity depended on the G4 topology and sequence, but across all structures bar one, it was roughly an order of magnitude greater than for duplex or single-stranded DNA. Moreover, photophysical and Raman spectral data showed clear discrimination between duplex DNA and G4-bound structures offering the prospect of discrimination in imaging as well as in solution. Crucially, unlike the constituent components of the probe, Ru-PDC3 is a powerful G4 disrupter. From circular dichroism (CD), a reduction of ellipticity of the G4 between 70 and 95% was observed depending on topology and in many cases was accompanied by an induced CD signal for the metal complex. The extent of change in ellipticity is amongst the largest reported for small-molecule ligand G4 binding. While a promising G4 probe, without modification, the complex is fully water-soluble and readily permeable to live cells.
Collapse
|
16
|
Lv L, Zhang L. G-quadruplexes in the monkeypox virus are potential antiviral targets. J Med Virol 2023; 95:e28299. [PMID: 36366981 DOI: 10.1002/jmv.28299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Monkeypox virus (MPXV) is a member of Orthopoxvirus in the Poxviridae family, causing a Public Health Emergency of International Concern. The number of cases and geographic range has increased significantly in 2022. Identification of MPXV-specific therapeutic targets is urgent. G-quadruplex (GQ) secondary structures attract great attention as potential targets for antiviral strategy. Whether GQs are present in the MPXV genome remains inconclusive. In this study, we aim to characterize the GQs encoded by MPXV. Through a series of biophysical experiments, we characterized the formation potential of MPXV-encoded GQs and evaluated the binding and stabilization abilities of GQ ligands including BRACO-19, pyridostatin, and TMPyP4 to GQs encoded by MPXV. Moreover, GQ ligands suppressed the gene transcription of MPXV sequences containing GQ. BRACO-19 and TMPyP4 were able to inhibit vaccinia virus replication. We demonstrated the existence of MPXV GQ and reinforced the idea that GQs could be novel antiviral targets. Targeting these GQ sequences with GQ-binding molecules may represent a new approach for MPXV therapy.
Collapse
Affiliation(s)
- Lu Lv
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Institute of Infection and Immunity, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Institute of Infection and Immunity, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
17
|
Interface of G-quadruplex with both stabilizing and destabilizing ligands for targeting various diseases. Int J Biol Macromol 2022; 219:414-427. [DOI: 10.1016/j.ijbiomac.2022.07.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022]
|
18
|
Wang L, Xu YP, Bai D, Shan SW, Xie J, Li Y, Wu WQ. Insights into the structural dynamics and helicase-catalyzed unfolding of plant RNA G-quadruplexes. J Biol Chem 2022; 298:102165. [PMID: 35738400 PMCID: PMC9293640 DOI: 10.1016/j.jbc.2022.102165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
RNA G-quadruplexes (rG4s) are noncanonical RNA secondary structures formed by guanine (G)-rich sequences. These complexes play important regulatory roles in both animals and plants through their structural dynamics and are closely related to human diseases and plant growth, development, and adaption. Thus, studying the structural dynamics of rG4s is fundamentally important; however, their folding pathways and their unfolding by specialized helicases are not well understood. In addition, no plant rG4-specialized helicases have been identified. Here, using single-molecule FRET, we experimentally elucidated for the first time the folding pathway and intermediates, including a G-hairpin and G-triplex. In addition, using proteomics screening and microscale thermophoresis, we identified and validated five rG4-specialized helicases in Arabidopsis thaliana. Furthermore, DExH1, the ortholog of the famous human rG4 helicase RHAU/DHX36, stood out for its robust rG4 unwinding ability. Taken together, these results shed light on the structural dynamics of plant rG4s.
Collapse
Affiliation(s)
- Liu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Ya-Peng Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Di Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Song-Wang Shan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Jie Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Yan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Wen-Qiang Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475001, China.
| |
Collapse
|
19
|
Characterization of G-Quadruplexes in Enterovirus A71 Genome and Their Interaction with G-Quadruplex Ligands. Microbiol Spectr 2022; 10:e0046022. [PMID: 35446122 PMCID: PMC9241713 DOI: 10.1128/spectrum.00460-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human enteroviruses cause many diseases; however, there is no specific therapeutic drug. G-quadruplex is an atypical secondary structure formed in the guanine rich region of DNA or RNA, which can exist in the viral genome. The different positions of G-quadruplex play an important role in the regulation of virus replication and infection. Whether G-quadruplexes are present in human enteroviruses is unknown. In current study, we analyzed the potential quadruplex forming sequences of human enteroviruses, especially EV-A71 virus, which causes hand, foot, and mouth disease. The results showed that there were a certain number of potential quadruplex-forming sequences in human enteroviruses. Through a variety of experimental methods, we evaluated the formation potential of EV-A71 encoded G-quadruplex and analyzed the binding ability of G-quadruplex ligands, including BRACO-19, pyridostatin and TMPyP4 to virus encoded G-quadruplexes. G-quadruplex ligands BRACO-19, PDS and TMPyP4 could inhibit the transcription of constructs containing EV-A71 G-quadruplex sequences. Moreover, we found that BRACO-19 was able to inhibit the replication of EV-A71, suggesting that targeting G-quadruplexes in EV-A71 genome by G-quadruplex ligands could be a novel antiviral way against EV-A71. Our finding not only uncovered the G-quadruplexes in human enteroviruses, but also would provide a new strategy for human enteroviruses therapy. IMPORTANCE G-quadruplex is a stable nucleic acid secondary structure formed by the folding of guanine rich nucleic acid. The important regulatory function of G-quadruplex makes it an attractive target of antiviral effect. Human enteroviruses cause a variety of human diseases, including common cold, nervous system diseases, cardiovascular damage, and diabetes. Enterovirus A71 (EV-A71) is one of pathogens causing hand, foot, and mouth disease; however, whether G-quadruplexes are present in the genomes of human enteroviruses is unknown. The function of G-quadruplexes in the EV-A71 genomes is not clear. We predicted and characterized G-quadruplex sequences in EV-A71. G-quadruplex ligands were identified to stabilize EV-A71 G-quadruplexes with high affinities. We also demonstrated G-quadruplex ligand BRACO-19 inhibited EV-A71 replication. Our studies provide a framework for targeting G-quadruplexes in the enteroviruses genome, which will be a new way to develop antiviral agents against human enteroviruses.
Collapse
|